Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T11:33:24.424Z Has data issue: false hasContentIssue false

The effects of cold exposure of pregnant sheep on foetal plasma nutrients, hormones and birth weight

Published online by Cambridge University Press:  09 March 2007

G. E. Thompson
Affiliation:
ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
J. M. Bassett
Affiliation:
Nuffield Institute for Medical Research, Oxford OX3 9DS
Debbie E. Samson
Affiliation:
Animal Breeding Research Organization, Edinburgh EH9 3JQ
J. Slee
Affiliation:
Animal Breeding Research Organization, Edinburgh EH9 3JQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Five pregnant sheep, with indwelling catheters positioned for withdrawal of maternal right-atrial and foetal arterial blood, were exposed for 2 h to neutral and to cold (– 1° and wool-clipped) environmental temperatures. Acute maternal cold exposure increased the concentrations of glucose, glycerol and non-esterified fatty acids in maternal plasma and increased the concentration of glucose in foetal plasma, but not glycerol or non-esterified fatty acids. The concentration of corticosteroids in maternal piasma increased. The concent ration of corticosteroids in foetal plasma did not change but the concentration of insulin increased.

2. Thirteen pregnant sheep were housed at thermoneutrality and thirteen similar, sheep fed the same amount of food, were clipped and exposed to cold during the last 5– 6 weeks of pregnancy. Chronic maternal cold exposure increased the birth weight of both single and twin lambs.

3. It is concluded that exposure of pregnant sheep to cold can alter the partition of some nutrients between mother and foetus in favour of the foetus, and it is suggested how this may be brought about.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Armstrong, D. G., Blaxter, K. L., Clapperton, J. L., Graham, N. McC. & Wainman, F. W. (1960). J. agric. Sci., Camb. 55, 395.CrossRefGoogle Scholar
Aulie, A., Astrup, H. N., Nedkvitne, J. J. & Velle, W. (1971). Acta vet. scand. 12, 496.CrossRefGoogle Scholar
Austin, A. R. & Young, N. E. (1977). Vet. Rec. 100, 527.CrossRefGoogle Scholar
Bassett, J. M. (1972). Aust. J. biol. Sci. 25, 1277.CrossRefGoogle Scholar
Bassett, J. M. & Hinks, N. T. (1969). J. Endocr. 44, 387.CrossRefGoogle Scholar
Bassett, J. M. & Madill, D. (1974). J. Endocr. 62, 299.CrossRefGoogle Scholar
Bassett, J. M. & Thorburn, G. D. (1971). J. Endocr. 50, 59.CrossRefGoogle Scholar
Bell, A. W., Gardner, J. W., Manson, W. & Thompson, G. E. (1975). Br. J. Nutr. 33, 207.CrossRefGoogle Scholar
Bell, A. W. & Thompson, G. E. (1979). Am. J. Physiol. 237, E309.Google Scholar
Comline, R. S. & Silver, M. (1970). J. Physiol., Lond. 209, 567.CrossRefGoogle Scholar
Comline, R. S. & Silver, M. (1972). J. Physiol., Lond. 222, 233.CrossRefGoogle Scholar
Dixon, R., Hyman, A., Gurpide, E., Dyrenfurth, I., Cohen, H., Bowe, E., Engel, T., Daniel, S., James, S. & Vande Wiele, R. (1970). Steroids 16, 771.CrossRefGoogle Scholar
Duncombe, W. G. (1964). Clinica chim. Acta 9, 122.CrossRefGoogle Scholar
Elphick, M. C., Hull, D. & Broughton Pipkin, F. (1979). J. Dev. Physiol. 1, 31.Google Scholar
Garland, P. B. & Randle, P. J. (1962). Nature, Lond. 196, 987.CrossRefGoogle Scholar
Halliday, R., Sykes, A. R., Slee, J., Field, A. C. & Russel, A. J. F. (1969). Anim. Prod. 11, 479.Google Scholar
James, E., Meschia, G. & Battaglia, F. C. (1971). Proc. Soc. exp. Biol. Med. 138, 823.CrossRefGoogle Scholar
McKay, D. G., Young, B. A. & Milligan, L. P. (1974). In Energy Metabolism of Farm Animals, pp. 3942. Hohenheim: Universität Hohenheim Dokumentationsstelle.Google Scholar
Mellor, D. J. & Murray, L. (1981). Res. vet. Sci. 30, 198.CrossRefGoogle Scholar
Panaretto, B. A. & Vickery, M. R. (1972). J. Endocr. 55, 519.CrossRefGoogle Scholar
Pedersen, J. (1975). In Carbohydrate Metabolism in the Fetus and Newborn, pp. 247273 [Sutherland, H. W. & Stowers, J. M., editors]. London: Churchill Livingston.Google Scholar
Robinson, J. J. (1977). Proc. Nutr. Soc. 36, 9.CrossRefGoogle Scholar
Rutter, W., Laird, T. R. & Broadbent, P. J. (1971). Anim. Prod. 13, 329.Google Scholar
Rutter, W., Laird, T. R. & Broadbent, P. J. (1972). Anim. Prod. 14, 127.Google Scholar
Seldinger, S. I. (1953). Acta Radiol, Stockh. 39, 368.CrossRefGoogle Scholar
Ternouth, J. H. & Beattie, A. W. (1970). Anim. Prod. 12, 343.Google Scholar
Thompson, G. E., Bassett, J. M. & Bell, A. W. (1978). Br. J. Nutr. 39, 219.CrossRefGoogle Scholar
Wallace, A. L. C. & Bassett, J. M. (1970). J. Endocr. 47, 21.CrossRefGoogle Scholar
Webster, M. E. D. & Lynch, J. J. (1966). Proc. Aust. Soc. Anim. Prod. 6, 234.Google Scholar
Werner, W., Rey, H.-G. & Wielinger, H. (1970). Z. analyt. Chem. 252, 224.CrossRefGoogle Scholar
Westra, R. & Christopherson, R. J. (1976). Can. J. anim. Sci. 56, 699.CrossRefGoogle Scholar
Wodzicka-Tomaszewska, M. (1963). N.Z. Jl agric. Res. 6, 440.CrossRefGoogle Scholar