Skip to main content Accessibility help
×
Home

Effects of changing dietary fat content on plasma gut hormone concentrations in diet-induced obese and diet-resistant rats

  • Jie Li (a1), Shuran Wang (a1), Na Zhang (a1), Ze Li (a1), Rui Li (a1) and Cong Li (a1)...

Abstract

Gut hormones play key roles in the regulation of energy homeostasis. However, little is known about the long- and short-term effects of changing dietary fat content on gut hormones. We aim to examine the effects of changing dietary fat content on plasma gut hormone concentrations in diet-induced obese (DIO) and diet-resistant (DR) rats. After inducing obesity with a high-fat (HF) diet, male Sprague–Dawley rats were divided into three groups according to their body-weight gain: DIO; DR; control (CON). The DIO and DR rats were further divided in random into two groups. One continued on a HF diet and the other switched to a low-fat (LF) diet for an additional 4 weeks. Finally, each group was randomly divided into three subgroups (n 8): fasted; fasted-refed HF; fasted-refed LF diet groups. Replacing a HF diet with a LF diet for 4 weeks resulted in less fat mass, higher fasting and post-HF plasma ghrelin concentration and lower postprandial plasma cholecystokinin concentration in the DIO and DR rats. Acute switching dietary fat resulted in significantly higher post-HF plasma ghrelin concentrations than post-LF ghrelin concentrations in the DR rats on LF diet (DRLF) and DIO rats on LF diet (DIOLF) rats, and significantly higher post-HF obestatin concentrations than post-LF obestatin concentrations in the CON, DR rats on HF diet (DRHF) and DRLF rats. Dietary fat content appears to play a role in the gut hormone profile, which may consequently influence fat mass.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of changing dietary fat content on plasma gut hormone concentrations in diet-induced obese and diet-resistant rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of changing dietary fat content on plasma gut hormone concentrations in diet-induced obese and diet-resistant rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of changing dietary fat content on plasma gut hormone concentrations in diet-induced obese and diet-resistant rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: S. Wang, fax +86 451 87502885, email shuranwang@163.com

References

Hide All
1 Murphy, KG & Bloom, SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444, 854859.
2 Tschop, M, Smiley, DL & Heiman, ML (2000) Ghrelin induces adiposity in rodents. Nature 407, 908913.
3 Wren, AM, Small, CJ, Ward, HL, et al. (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141, 43254328.
4 Kos, K, Harte, AL, O'Hare, PJ, et al. (2009) Ghrelin and the differential regulation of des-acyl (DSG) and oct-anoyl ghrelin (OTG) in human adipose tissue (AT). Clin Endocrinol (Oxf) 70, 383389.
5 Gourcerol, G, Coskun, T, Craft, LS, et al. (2007) Preproghrelin-derived peptide, obestatin, fails to influence food intake in lean or obese rodents. Obesity (Silver Spring) 15, 26432652.
6 Nogueiras, R, Pfluger, P, Tovar, S, et al. (2007) Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 148, 2126.
7 Seoane, LM, Al-Massadi, O, Pazos, Y, et al. (2006) Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. J Endocrinol Invest 29, RC13RC15.
8 Zhang, JV, Ren, PG, Avsian-Kretchmer, O, et al. (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 310, 996999.
9 Abbott, CR, Monteiro, M, Small, CJ, et al. (2005) The in–hibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res 1044, 127131.
10 Acuna-Goycolea, C & van den Pol, AN (2005) Peptide YY(3–36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci 25, 1051010519.
11 Batterham, RL, Cowley, MA, Small, CJ, et al. (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650654.
12 Gibbs, J, Young, RC & Smith, GP (1973) Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245, 323325.
13 Adams, SH, Lei, C, Jodka, CM, et al. (2006) PYY[3–36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 136, 195201.
14 Chelikani, PK, Haver, AC & Reidelberger, RD (2007) Intermittent intraperitoneal infusion of peptide YY(3–36) reduces daily food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol 293, R39R46.
15 Boey, D, Lin, S, Enriquez, RF, et al. (2008) PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 42, 1930.
16 Levin, BE & Keesey, RE (1998) Defense of differing body weight set points in diet-induced obese and resistant rats. Am J Physiol 274, R412R419.
17 Levin, BE, Triscari, J & Sullivan, AC (1983) Relationship between sympathetic activity and diet-induced obesity in two rat strains. Am J Physiol 245, R364R371.
18 Zhao, D, Wang, SR, Ma, WW, et al. (2008) Alpha1-macroglobulin: a potential obesity-related factor in serum. Med Sci Monit 14, BR57BR61.
19 Buettner, R, Scholmerich, J & Bollheimer, LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15, 798808.
20 Speakman, J, Hambly, C, Mitchell, S, et al. (2007) Animal models of obesity. Obes Rev 8, Suppl. 1, 5561.
21 Furnes, MW, Zhao, CM & Chen, D (2009) Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obes Surg 19, 14301438.
22 Levin, BE, Triscari, J, Hogan, S, et al. (1987) Resistance to diet-induced obesity: food intake, pancreatic sympathetic tone, and insulin. Am J Physiol 252, R471R478.
23 Huang, XF, Yu, Y, Li, Y, et al. (2008) Ventromedial hypothalamic NPY Y2 receptor in the maintenance of body weight in diet-induced obesity in mice. Neurochem Res 33, 18811888.
24 Aziz, AA, Kenney, LS, Goulet, B, et al. (2009) Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats. J Nutr 139, 18811889.
25 Cummings, DE, Weigle, DS, Frayo, RS, et al. (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346, 16231630.
26 Cummings, DE, Purnell, JQ, Frayo, RS, et al. (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 17141719.
27 Erdmann, J, Topsch, R, Lippl, F, et al. (2004) Postprandial response of plasma ghrelin levels to various test meals in relation to food intake, plasma insulin, and glucose. J Clin Endocrinol Metab 89, 30483054.
28 Monteleone, P, Bencivenga, R, Longobardi, N, et al. (2003) Differential responses of circulating ghrelin to high-fat or high-carbohydrate meal in healthy women. J Clin Endocrinol Metab 88, 55105514.
29 Huda, MS, Durham, BH, Wong, SP, et al. (2008) Plasma obestatin levels are lower in obese and post-gastrectomy subjects, but do not change in response to a meal. Int J Obes (Lond) 32, 129135.
30 Guo, ZF, Ren, AJ, Zheng, X, et al. (2008) Different responses of circulating ghrelin, obestatin levels to fasting, re-feeding and different food compositions, and their local expressions in rats. Peptides 29, 12471254.
31 Dockray, G (2004) Gut endocrine secretions and their relevance to satiety. Curr Opin Pharmacol 4, 557560.
32 Liddle, RA, Goldfine, ID, Rosen, MS, et al. (1985) Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75, 11441152.
33 Moran, TH & McHugh, PR (1982) Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am J Physiol 242, R491R497.
34 Taylor, IL (1993) Role of peptide YY in the endocrine control of digestion. J Dairy Sci 76, 20942101.
35 Nauck, MA, Niedereichholz, U, Ettler, R, et al. (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273, E981E988.
36 Wettergren, A, Schjoldager, B, Mortensen, PE, et al. (1993) Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38, 665673.
37 Flint, A, Raben, A, Ersboll, AK, et al. (2001) The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord 25, 781792.
38 Reeves, PG, Nielsen, FH & Fahey, GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 19391951.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed