Skip to main content Accessibility help
×
Home

Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats

  • Suh-Ching Yang (a1), Chi-Chang Huang (a1), Jan-Show Chu (a2) and Jiun-Rong Chen (a1)

Abstract

The purpose of the present study was to evaluate the effects of β-carotene on the cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats. Rats in the ethanol group were given an ethanol-containing liquid diet that provided 36% of total energy as ethanol, while rats in the control group were fed an isoenergetic diet without ethanol. After 4 weeks, hepatocytes were taken out and cultured for 24 h. Hepatocytes from the rats in the control and ethanol groups were cultured in medium without (HC, HE) or with β-carotene (HC+B, HE+B). The results showed that lactate dehydrogenase leakage was significantly increased in the HE compared with that in the HC group. However, lactate dehydrogenase leakage of the HE+B group was similar to that of the HC group. When compared with the HC group, activities of glutathione peroxidase and catalase in the HE group were significantly decreased by 54 and 31%, respectively. Catalase activity in the HE+B group was significantly increased by 61% compared with that in the HE group. However, activities of glutathione reductase and superoxide dismutase showed no difference among the groups. The level of glutathione in the HC+B and HE+B groups was significantly increased to 155 and 143% compared with those in the HC and HE groups, respectively. The concentration of lipid peroxides showed no difference among the groups. The present results demonstrate that β-carotene improved the cell viability of hepatocytes, and increased catalase activities and glutathione levels in hepatocytes from chronically ethanol-fed rats.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: fax +886 2 2737 3112, email syunei@tmu.edu.tw

References

Hide All
Ahmed, S, Leo, MA & Lieber, CSInteraction between alcohol and beta-carotene in patients with alcoholic liver disease. Am J Clin Nutr (1994) 60, 430436.
Alam, SQ & Alam, BSLipid peroxide, α-tocopherol and retinoid levels in plasma and liver of rats fed diets containing β-carotene and 13-cis-retinoic acids. J Nutr (1983) 113, 26082614.
Anderson, MEEnzymatic and chemical methods for the determination of glutathione. In Glutathione: Chemical, Biochemical and Medical Aspec, vol. A. pp. 339365 [Dolphin, D, Poulson, R & Avramovic, O editors]. New York: John Wiley & Sons. (1989)
Bailey, SM & Cunningham, CCEffect of dietary fat on chronic ethanol-induced oxidative stress in hepatocytes. Alcohol Clin Exp Res (1999) 23, 12101218.
Berry, MN & Friend, DSHigh-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol (1969) 43, 506520.
Bertram, JS, Pung, A, Churley, M, Kappock, TJ, Wilkins, LR & Conney, RVDiverse carotenoids protect against chemically induced neoplastic transformation. Carcinogenesis (1991) 12, 671678.
Comport, M, Benedetti, A & Cheli, FStudies on in vitro peroxidation of liver lipids in ethanol-treated rats. Lipids (1973) 8, 498502.
Cunningham, CC & Spach, PIThe effect of chronic ethanol consumption on the lipids in liver mitochondria. Ann N Y Acad Sci (1987) 492, 181192.
Department of Health Taiwan Analysis of the Main Causes of Death in Taiwan for the Year 2002 Taiwan: Department of Health (2003)
Diplock, ATAntioxidant nutrients and disease prevention: an overview. Am J Clin Nutr (1991) 53, 189S193S.
Dufour, DR, Lott, JA, Nolte, FS, Gretch, DR, Koff, RS & Seeff, LBDiagnosis and monitoring of hepatic injury. I Performance characteristics of laboratory tests. Clin Chem (2000) 46, 20272049.
Ek, B, Halberg, C, Sjogren, KG, & Hjalmarson, AReoxygenation-induced cell damage of isolated neonatal rat ventricular myocytes can be reduced by chain-breaking antioxidants. Free Radic Biol Med (1994) 16, 117121.
Esterbauer, H & Cheeseman, KHDetermination of aldehydic lipid peroxidation products: malonaldehyde and 4–hydroxynonenal. Methods Enzymol (1990) 186, 407421.
Ishii, H, Kurose, I & Kato, S, Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol (1997) 12, 272282.
Kawase, T, Kato, S & Lieber, CS, Lipid peroxidation and antioxidant defense system in rat liver after chronic ethanol feeding. Hepatology (1989) 10, 815821.
Kim-Jun, HInhibitory effects of a and β–carotene in croton oil–induced or enzymatic lipid peroxidation and hydroperoxide production in mouse skin epidermis. Int J Biochem (1993) 25, 911915.
Krinsky, NIAntioxidant functions of carotenoids. Free Radic Biol Med (1989) 7, 617635.
Krinsky, NI & Deneke, SMInteraction of oxygen and oxyradicals with carotenoids. J Natl Cancer Inst (1982) 69, 205210.
Kunert, KJ & Tappel, ALThe effect of vitamin C and bcarotene on in vitro lipid peroxidation in guinea pig as measured by pentane and ethane production. Lipids (1983) 11, 271274.
Lawlor, SM & O'Brien, NMModulation of paraquat toxicity by β–carotene at low oxygen partial pressure in chicken embryo fibroblasts. Br J Nutr (1997) 77, 133140.
Leo, MA, Rosman, AS & Lieber, CS, Differential depletion of carotenoids and tocopherol in liver disease. Hepatology (1993) 17, 977986.
Lieber, CSHepatic metabolic and toxic effect of ethanol: 1991 update. Alcohol Clin Exp Res (1991) 15, 573592.
Lieber, CSRoles of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases. Adv Pharmacol (1997) 38, 601628.
Lieber, CS & DeCarli, LMAnimal models of chronic ethanol toxicity. Methods Enzymol (1994) 233, 585594.
Lomnitski, L, Bar-Natan, R, Sklan, D, & Grossman, SThe interaction between β–carotene and lipoxygenase in plant and animal systems. Biochim Biophys Acta (1993) 1167, 331338.
Lowry, OH, Rosebrough, NJ, Farr, A, & Randall, RJProtein measurement with the Folin phenol reagent. J Biol Chem (1951) 193, 265275.
Lück, HCatalase. In Methods of Enzymatic Analysis, pp. 885888. [Bergmeyer, HU, editor]. New York: Academic Press (1963)
Martin, KR, Faila, ML & Smith, JCBeta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage. J Nutr (1996) 126, 20982106.
Moldeus, P, Hogberg, J & Orrenius, SIsolation and use of liver cells. Methods Enzymol (1978) 52, 6071.
Morton, S & Mitchell, MCEffects of chronic ethanol feeding on glutathione turnover in the ra. Biochem Pharmacol (1985) 34, 15591563.
Müller, A, Sies, HRole of alcohol dehydrogenase activity and the acetaldehyde in ethanol-induced ethane and pentane production by isolated perfused rat liver. Biochem J (1982) 206, 153156.
Navder, KP, Baraona, E & Lieber, CSPolyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipidemia in rats. Nutrition (1997) 127, 18001806.
Nebot, C, Moutet, M, Huet, P, Xu, JZ, Yadan, JC & Chaudiere, JSpectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem (1993) 214, 442451.
Nordmann, R, Ribiere, C & Rouach, HImplication of free radical mechanisms in ethanol-induced cellular injury. Free Radic Biol Med (1992) 12, 219240.
Oh, SI, Kim, CI, Chun, HJ & Park, SCChronic ethanol consumption affects glutathione status in rat liver. J Nutr (1998) 128, 758763.
Paglia, DE & Valentine, WNStudies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med (1967) 70, 158169.
Palozza, P & Krinsky, NIThe inhibition of radical-initiated peroxidation of microsomal lipids by both a-tocopherol and bcarotene. Free Radic Biol Med (1991) 11, 407414.
Palozza, P & Krinsky, NIAntioxidant effects of carotenoids in vivo and in vitro: an overview. Methods Enzymol (1992) 213, 403420.
Pirola, RC & Lieber, CSEnergy wastage in rats given drugs that induce microsomal enzyme. J Nutr (1975) 105, 15441548.
Polavarapu, R, Spitz, DR, Sim, JEFollansbee, MH, Oberley, LW, Rahemtulla, A & Nanji, AAIncreased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil. Hepatology (1998) 27, 13171323.
Reinke, LA, Lai, EK, DuBose, CM& MacCay, PBReactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro. Proc Natl Acad Sci U S A (1987) 84, 92239227.
Rouach, H, Fataccioli, V, Gentil, MFrench, SW, Morimoto, M & Nordmann, REffect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology (1997) 25, 351355.
Schisler, NJ & Singh, SMEffect of ethanol in vivo on enzymes which detoxify oxygen free radicals. Free Radic Biol Med (1989) 7, 117123.
Shaw, S, Jayatilleke, E, Ross, WAGordon, ER & Lieber, CSEthanol-induced lipid peroxidation: potentiation by long-term alcohol feeding and attenuation by methionine. J Lab Clin Med (1981) 98, 417422.
Wei, RR, Wamer, WG, Lambert, LA& Kornhauser, Aβ–Carotene uptake and effects on intracellular levels of retinal in vitro. Nutr Cancer (1998) 30, 5358.
Williams, AJ & Barry, REFree radical generation by neutrophils: a potential mechanism of cellular injury in acute alcoholic hepatitis. Gut (1987) 28, 11571161.

Keywords

Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats

  • Suh-Ching Yang (a1), Chi-Chang Huang (a1), Jan-Show Chu (a2) and Jiun-Rong Chen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed