Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-27T22:38:33.487Z Has data issue: false hasContentIssue false

The effect of prenatal protein-energy malnutrition on the development of mandibles and long bones in newborn rats

Published online by Cambridge University Press:  09 March 2007

Tetsuo Nakamoto
Affiliation:
Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70119, USA
Johnny R. Porter
Affiliation:
Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70119, USA
Mark M. Winkler
Affiliation:
Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70119, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. To evaluate the role of gestational protein-energy malnutrition on fetal hard-tissue growth and metabolism, we measured several variables in the growth centres of mandibles and long bones of newborn rats.

2. Control pups and pups of malnourished dams had approximately the same extent of reduction in body-weight, mandibular weight and long-bone weight.

3. The malnourished group had more cells in the mandible although cell size was the same as that of controls.

4. In contrast, in the long bones, the malnourished group had fewer cells than did controls whereas cell size was unchanged.

5. Calcium content was the same in long bones of both groups, but was less in the mandibles of pups from malnourished dams. Ca metabolism as measured by 45Ca uptake was unchanged in the long bones, but was increased in the mandibles of the malnourished group shortly after birth. Calcification patterns at birth in these bones correlated well with alkaline phosphatase (EC 3.1.3.1) activity.

6. These findings indicate that the mandibles and long bones of offspring are affected differently by protein–energy malnutrition during the mother's gestation. Prenatal nutritional stress resulted in a disturbance of the pituitary–adrenal system. Increased adrenal corticosterone could possibly be related to the different observed changes in bone metabolism.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Clark, A. F. & Vigals, P. J. (1979). Muscle and Nerve 2, 265273.CrossRefGoogle Scholar
Cohen, I. K., Diegelmann, R. J.& Johnson, J. M. (1977). Surgery 82, 1520.Google Scholar
Dietrich, J. W., Canalis, E. M., Manina, D. M.& Raisz, L. G. (1979). Endocrinology 104, 715721.Google Scholar
DiOrio, L. P., Miller, S. A.& Navia, J. M. (1973). Journal of Nutrition 103, 856865.Google Scholar
Dixson, W. J.& Massey, F. J. (1969). Introduction to Statistical Analysis. New York: McGraw-Hill.Google Scholar
Endo, S., Kamori, K.& Niyama, Y. (1974). Journal of Nutritional Science and Vitaminology 20, 143152.CrossRefGoogle Scholar
Enesco, M.& Leblond, C. P. (1962). Journal of Embryology and Experimental Morphology 10, 530562.Google Scholar
Fabian, T., Szelenyi, I., Zelles, T.& Fejerdy, T. (1972). Acta Medica Academiae Scientiarum Hungaricae 29, 339345.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L.& Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
Lunn, P. G., Whitehead, R. G., Baker, B. A.& Austin, S. (1976). British Journal of Nutrition 36, 537550.CrossRefGoogle Scholar
Mallek, H. M., Nakamoto, T., Nuchtern, E.& Miller, S. A. (1979). Journal of Dental Research 58, 19211925.Google Scholar
Marks, S. C. (1974). American Journal of Anatomy 141, 329340.CrossRefGoogle Scholar
Mosier, H. D., Dearden, L. C., Roberts, R. C., Jansone, R. A.& Biggs, C. S. (1981). Teratology 23, 1524.CrossRefGoogle Scholar
Nakamoto, T., Mallek, H. M.& Miller, S. A. (1979). Journal of Dental Research 58, 11151122.CrossRefGoogle Scholar
Nakamoto, T.& Miller, S. A. (1977). Journal of Nutrition 107, 983989.CrossRefGoogle Scholar
Nakamoto, T.& Miller, S. A. (1979 a). Journal of Nutrition 109, 14691476.CrossRefGoogle Scholar
Nakamoto, T.& Miller, S. A. (1979 b). Journal of Nutrition 109, 14771482.Google Scholar
National Academy of Science (1972). Nutrient Requirements of Laboratory Animals, 2nd ed. Washingto., DC: National Academy of Science.Google Scholar
Olusi, S. D., Orrell, D. H., Morris, P. M.& McFarlane, H. (1977). Clinica Chimica Acta 74, 261269.CrossRefGoogle Scholar
Pitkin, R. M. (1975). American Journal of Obstetrics and Gynecology 121, 724737.CrossRefGoogle Scholar
Porter, J. R., Hyde, P. M.& Coyne, M. D. (1977). Hormone Research 8, 231246.CrossRefGoogle Scholar
Prasad, A. S., Dumouchelle, E., Knovich, D.& Oberless, D. (1972). Journal of Laboratory and Clinical Medicine 80, 598602.Google Scholar
Rogers, Q. R.& Harper, A. E. (1965). Journal of Nutrition 87, 267273.CrossRefGoogle Scholar
Salomon, C. D. (1974). Calcified Tissue Research 15, 201212.CrossRefGoogle Scholar
Shrader, R. E.& Zeman, F. J. (1973). Journal of Nutrition 103, 792801.CrossRefGoogle Scholar
Van Marthens, E.& Shimomaye, S. Y. (1978). Journal of Nutrition 108, 959966.CrossRefGoogle Scholar
Vaughan, J. M. (1975). The Physiology of Bone, 2nd ed. Oxford: Clarendon Press.Google Scholar
Wienmann, J. P.& Sicher, H. (1955). Bone and Bones. Fundamentals of Bone Biology. St. Louis: C. V. Mosby.Google Scholar
Winick, M.& Noble, A. (1965). Developmental Biology 12, 451466.Google Scholar
Younoszai, M. K., Swanson, J. D.& Ranshaw, J. (1978). American Journal of Clinical Nutrition 31, 931937.Google Scholar
Zeman, F. J. (1970). Journal of Nutrition 100, 530538.Google Scholar