Skip to main content Accessibility help
×
Home

Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis

  • Daniele Lettieri-Barbato (a1), Francesco Tomei (a2), Angela Sancini (a2), Giuseppa Morabito (a1) and Mauro Serafini (a3)...

Abstract

Non-enzymatic antioxidant capacity (NEAC) represents a sensitive biomarker measuring the in vivo antioxidant potential of vegetable foods. To evaluate the effectiveness of plant-derived foods and beverages on the plasma non-enzymatic antioxidant system, we analysed all literature published upto May 2010. Data were extracted by two authors independently, and the effect size was summarised using standardised mean differences by a random-effects model. For the analysis, eighty-eight studies were included, reporting a total number of 122 interventions and involving 2890 subjects. There was overall evidence of the effectiveness of fruit, vegetables, dietary patterns based on plant foods, red wine and tea in increasing plasma NEAC. No changes were found for chocolate and fruit juices. We observed an overall effect size three times higher in subjects with risk factors when compared with healthy subjects. Total radical-trapping antioxidant parameter, oxygen radical absorbance capacity and ferric-reducing antioxidant power methods showed a similar increase in plasma NEAC following dietary supplementation, whereas Trolox equivalent antioxidant capacity did not respond to dietary supplementation. Data from the present meta-analysis show that plant-derived foods represent an effective strategy to enhance an endogenous antioxidant network in humans. This is particularly evident in the presence of oxidative stress-related risk factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: M. Serafini, fax +39 0651494550, email serafini_mauro@yahoo.it

References

Hide All
1Serafini, M, Jakszyn, P, Luján-Barroso, L, et al. (2012) Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer 131, E544E554.
2Key, TJ (2011) Fruit and vegetables and cancer risk. Br J Cancer 104, 611.
3Khan, N, Afaq, F & Mukhtar, H (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10, 475510.
4Bjelakovic, G, Nikolova, D, Gluud, LL, et al. (2008) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. The Cochrane Database of Systematic Reviews issue 2, CD007176.
5Bjelakovic, G, Gluud, LL, Nikolova, D, et al. (2011) Antioxidant supplements for liver diseases. The Cochrane Database of Systematic Reviews issue 3, CD007749.
6Bjelakovic, G, Nikolova, D, Gluud, LL, et al. (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842857.
7Serafini, M, Villano, D, Spera, G, et al. (2006) Redox molecules and cancer prevention: the importance of understanding the role of the antioxidant network. Nutr Cancer 56, 232240.
8Serafini, M, Miglio, C, Peluso, I, et al. (2011) Modulation of plasma non enzymatic antioxidant capacity (NEAC) by plant foods: the role of polyphenols. Curr Top Med Chem 11, 18211846.
9Bartosz, G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44, 711720.
10Barbato, DL, Tomei, G, Tomei, F, et al. (2010) Traffic air pollution and oxidatively generated DNA damage: can urinary 8-oxo-7,8-dihydro-2-deoxiguanosine be considered a good biomarker? A meta-analysis. Biomarkers 15, 538545.
11Harris, AD, Bradham, DD, Baumgarten, M, et al. (2004) The use and interpretation of quasi-experimental studies in infectious diseases. Clin Infect Dis 38, 15861591.
12Harris, AD, McGregor, JC, Perencevich, EN, et al. (2006) The use and interpretation of quasi-experimental studies in medical informatics. J Am Med Inform Assoc 13, 1623.
13Borenstein, M, Hedges, LV, Higgins, JPT, et al. (2009) Introduction to Meta-analysis. Chichester: Wiley pp. 360361.
14Manchikanti, L, Datta, S, Smith, HS, et al. (2009) Evidence-based medicine, systematic reviews, and guidelines in interventional pain management: part 6. Systematic reviews and meta-analyses of observational studies. Pain Physician 12, 819850.
15Higgins, JPT (2008) Cochrane Handbook for Systematic Reviews of Interventions. Chichester: Wiley-Blackwell.
16Deeks JJ, Higgins JPT, Altman DG (2008) Analysis data and undertaking meta-analysis. In Systematic Reviews of Interventions, pp. 268–271 [JPT Higgins and S Green, editors]. Chichester: Wiley-Blackwell.
17DerSimonian, R & Laird, N (1986) Meta-analysis in clinical trials. Control Clin Trials 7, 177188.
18Higgins, JP & Thompson, SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21, 15391558.
19Sterne, JA, Gavaghan, D & Egger, M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53, 11191129.
20Lim, JS, Mietus-Snyder, M, Valente, A, et al. (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7, 251264.
21Fraga, CG, Actis-Goretta, L, Ottaviani, JI, et al. (2005) Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol 12, 1117.
22Lettieri-Barbato, D, Villaño, D, Beheydt, B, et al. (2012) Effect of ingestion of dark chocolates with similar lipid composition and different cocoa content on antioxidant and lipid status in healthy humans. Food Chem 132, 13051310.
23Villaño, D, Lettieri-Barbato, D, Guadagni, F, et al. (2012) Effect of acute consumption of oolong tea on antioxidant parameters in healthy individuals. Food Chem 132, 21022106.
24Desch, S, Schmidt, J, Kobler, D, et al. (2010) Effect of cocoa products on blood pressure: systematic review and meta-analysis. Am J Hypertens 23, 97103.
25Zheng, XX, Xu, YL, Li, SH, et al. (2011) Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr 94, 601610.
26Aune, D, Lau, R, Chan, DS, et al. (2011) Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology 141, 106118.
27Bertipaglia de Santana, M, Mandarino, MG, Cardoso, JR, et al. (2008) Association between soy and green tea (Camellia sinensis) diminishes hypercholesterolemia and increases total plasma antioxidant potential in dyslipidemic subjects. Nutrition 24, 562568.
28Erba, D, Riso, P, Bordoni, A, et al. (2005) Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem 16, 144149.
29Panza, VS, Wazlawik, E, Ricardo Schütz, G, et al. (2008) Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition 24, 433442.
30Coimbra, S, Castro, E, Rocha-Pereira, P, et al. (2006) The effect of green tea in oxidative stress. Clin Nutr 25, 790796.
31van het Hof, KH, de Boer, HS, Wiseman, SA, et al. (1997) Consumption of green or black tea does not increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr 66, 11251132.
32Hodgson, JM, Puddey, IB, Croft, KD, et al. (2000) Acute effects of ingestion of black and green tea on lipoprotein oxidation. Am J Clin Nutr 71, 11031107.
33Serafini, M, Ghiselli, A & Ferro-Luzzi, A (1996) In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 50, 28–23.
34Davies, MJ, Judd, JT, Baer, DJ, et al. (2003) Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J Nutr 133, 3298S3302S.
35Maxwell, S & Thorpe, G (1996) Tea flavonoids have little short term impact on serum antioxidant activity. BMJ 313, 229.
36Duffy, SJ, Keaney, JF Jr, Holbrook, M, et al. (2001) Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104, 151156.
37Kyle, JA, Morrice, PC, McNeill, G, et al. (2007) Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J Agric Food Chem 55, 48894894.
38Widlansky, ME, Duffy, SJ, Hamburg, NM, et al. (2005) Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free Radic Biol Med 38, 499506.
39Vukovic, J, Modun, D, Budimir, D, et al. (2009) Acute, food-induced moderate elevation of plasma uric acid protects against hyperoxia-induced oxidative stress and increase in arterial stiffness in healthy humans. Atherosclerosis 207, 255260.
40Maxwell, S, Cruickshank, A & Thorpe, G (1994) Red wine and antioxidant activity in serum. Lancet 344, 193194.
41Modun, D, Music, I, Vukovic, J, et al. (2008) The increase in human plasma antioxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols. Atherosclerosis 197, 250256.
42Arendt, BM, Ellinger, S, Kekic, K, et al. (2005) Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial (ISRCTN68505294). Nutr J 4, 33.
43Serafini, M, Maiani, G & Ferro-Luzzi, A (1998) Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 128, 10031007.
44Avellone, G, Di Garbo, V, Campisi, D, et al. (2006) Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis. Eur J Clin Nutr 60, 4147.
45Blackhurst, DM & Marais, AD (2006) Concomitant consumption of red wine and polyunsaturated fatty acids in edible oil does not influence the peroxidation status of chylomicron lipids despite increasing plasma catechin concentration. Nutr Metab Cardiovasc Dis 16, 550558.
46Cao, G, Booth, SL, Sadowski, JA, et al. (1998) Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr 68, 10811087.
47Day, A & Stansbie, D (1995) Cardioprotective effect of red wine may be mediated by urate. Clin Chem 41, 13191320.
48Fernández-Pachón, MS, Villaño, D, Troncoso, AM, et al. (2005) Antioxidant capacity of plasma after red wine intake in human volunteers. J Agric Food Chem 53, 50245029.
49Pinzani, P, Petruzzi, E, Magnolfi, SU, et al. (2010) Red or white wine assumption and serum antioxidant capacity. Arch Gerontol Geriatr 51, 7274.
50Simonetti, P, Gardana, C & Pietta, P (2001) Plasma levels of caffeic acid and antioxidant status after red wine intake. J Agric Food Chem 49, 59645968.
51Otaolaurruchi, E, Fernández-Pachón, MS, Gonzalez, AG, et al. (2007) Repeated red wine consumption and changes on plasma antioxidant capacity and endogenous antioxidants (uric acid and protein thiol groups). J Agric Food Chem 55, 97139718.
52Tsang, C, Higgins, S, Duthie, GG, et al. (2005) The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers. Br J Nutr 93, 233240.
53Guarda, E, Godoy, I, Foncea, R, et al. (2005) Red wine reduces oxidative stress in patients with acute coronary syndrome. Int J Cardiol 104, 3538.
54Kiviniemi, TO, Saraste, A, Toikka, JO, et al. (2007) A moderate dose of red wine, but not de-alcoholized red wine increases coronary flow reserve. Atherosclerosis 195, 176181.
55Visioli, F, Riso, P, Grande, S, et al. (2003) Protective activity of tomato products on in vivo markers of lipid oxidation. Eur J Nutr 42, 201206.
56Tyssandier, V, Feillet-Coudray, C, Caris-Veyrat, C, et al. (2004) Effect of tomato product consumption on the plasma status of antioxidant microconstituents and on the plasma total antioxidant capacity in healthy subjects. J Am Coll Nutr 23, 148–145.
57Stracke, BA, Rüfer, CE, Bub, A, et al. (2009) Bioavailability and nutritional effects of carotenoids from organically and conventionally produced carrots in healthy men. Br J Nutr 101, 16641672.
58Shen, YC, Chen, SL & Wang, CK (2007) Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J Agric Food Chem 55, 64756481.
59Serafini, M, Bugianesi, R, Salucci, M, et al. (2002) Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br J Nutr 88, 615623.
60Pellegrini, N, Riso, P & Porrini, M (2000) Tomato consumption does not affect the total antioxidant capacity of plasma. Nutrition 16, 268271.
61Lee, A, Thurnham, DI & Chopra, M (2000) Consumption of tomato products with olive oil but not sunflower oil increases the antioxidant activity of plasma. Free Radic Biol Med 29, 10511055.
62Castenmiller, JJ, West, CE, Linssen, JP, et al. (1999) The food matrix of spinach is a limiting factor in determining the bioavailability of beta-carotene and to a lesser extent of lutein in humans. J Nutr 129, 349355.
63Ahuja, KD & Ball, MJ (2006) Effects of daily ingestion of chilli on serum lipoprotein oxidation in adult men and women. Br J Nutr 96, 239242.
64McAnlis, GT, McEneny, J, Pearce, J, et al. (1999) Absorption and antioxidant effects of quercetin from onions, in man. Eur J Clin Nutr 53, 9296.
65Jacob, K, Periago, MJ, Böhm, V, et al. (2008) Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Br J Nutr 99, 137146.
66Cao, G, Russell, RM, Lischner, N, et al. (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128, 23832390.
67Mathur, S, Devaraj, S, Grundy, SM, et al. (2002) Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr 132, 36633667.
68Flammer, AJ, Hermann, F, Sudano, I, et al. (2007) Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation 116, 23762382.
69Serafini, M, Bugianesi, R, Maiani, M, et al. (2003) Plasma antioxidants from chocolate. Nature 424, 1013.
70Murphy, KJ, Chronopoulos, AK, Singh, I, et al. (2003) Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr 77, 14661473.
71Rein, D, Lotito, S, Holt, RR, et al. (2000) Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr 130, 8S Suppl., 2109S2114S.
72Wiswedel, I, Hirsch, D, Kropf, S, et al. (2004) Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans. Free Radic Biol Med 37, 411421.
73Mursu, J, Voutilainen, S, Nurmi, T, et al. (2004) Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic Biol Med 37, 13511359.
74Engler, MB, Engler, MM, Chen, CY, et al. (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23, 197204.
75Wang, JF, Schramm, DD, Holt, RR, et al. (2000) A dose–response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr 130, 8S Suppl., 2115S2119S.
76Vlachopoulos, C, Aznaouridis, K, Alexopoulos, N, et al. (2005) Effect of dark chocolate on arterial function in healthy individuals. Am J Hypertens 18, 785791.
77Roberts, WG, Gordon, MH & Walker, AF (2003) Effects of enhanced consumption of fruit and vegetables on plasma antioxidant status and oxidative resistance of LDL in smokers supplemented with fish oil. Eur J Clin Nutr 57, 13031310.
78Urquiaga, I, Strobel, P, Perez, D, et al. (2010) Mediterranean diet and red wine protect against oxidative damage in young volunteers. Atherosclerosis 211, 694699.
79Leighton, F, Cuevas, A, Guasch, V, et al. (1999) Plasma polyphenols and antioxidants, oxidative DNA damage and endothelial function in a diet and wine intervention study in humans. Drugs Exp Clin Res 25, 133141.
80Razquin, C, Martinez, JA, Martinez-Gonzalez, MA, et al. (2009) A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur J Clin Nutr 63, 13871393.
81Svendsen, M, Blomhoff, R, Holme, I, et al. (2007) The effect of an increased intake of vegetables and fruit on weight loss, blood pressure and antioxidant defense in subjects with sleep related breathing disorders. Eur J Clin Nutr 61, 13011311.
82Miller, ER 3rd, Erlinger, TP, Sacks, FM, et al. (2005) A dietary pattern that lowers oxidative stress increases antibodies to oxidized LDL: results from a randomized controlled feeding study. Atherosclerosis 183, 175182.
83Arendt, BM, Boetzer, AM, Lemoch, H, et al. (2001) Plasma antioxidant capacity of HIV-seropositive and healthy subjects during long-term ingestion of fruit juices or a fruit-vegetable-concentrate containing antioxidant polyphenols. Eur J Clin Nutr 55, 786792.
84Castilla, P, Echarri, R, Dávalos, A, et al. (2006) Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 84, 252262.
85Bub, A, Watzl, B, Blockhaus, M, et al. (2003) Fruit juice consumption modulates antioxidative status, immune status and DNA damage. J Nutr Biochem 14, 9098.
86Cilla, A, De Palma, G, Lagarda, MJ, et al. (2009) Impact of fruit beverage consumption on the antioxidant status in healthy women. Ann Nutr Metab 54, 3542.
87Duthie, SJ, Jenkinson, AM, Crozier, A, et al. (2006) The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur J Nutr 45, 113122.
88Guo, C, Wei, J, Yang, J, et al. (2008) Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects. Nutr Res 28, 7277.
89O'Byrne, DJ, Devaraj, S, Grundy, SM, et al. (2002) Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr 76, 13671374.
90Park, YK, Lee, SH, Park, E, et al. (2009) Changes in antioxidant status, blood pressure, and lymphocyte DNA damage from grape juice supplementation. Ann N Y Acad Sci 1171, 385390.
91Riso, P, Visioli, F, Gardana, C, et al. (2005) Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem 53, 941947.
92Young, JF, Nielsen, SE, Haraldsdóttir, J, et al. (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69, 8794.
93Borochov-Neori, H, Judeinstein, S, Greenberg, A, et al. (2006) Phenolic antioxidants and antiatherogenic effects of Marula (Sclerocarrya birrea subsp. caffra) fruit juice in healthy humans. J Agric Food Chem 56, 98849891.
94Gorinstein, S, Caspi, A, Libman, I, et al. (2004) Fresh Israeli jaffa sweetie juice consumption improves lipid metabolism and increases antioxidant capacity in hypercholesterolemic patients suffering from coronary artery disease: studies in vitro and in humans and positive changes in albumin and fibrinogen fractions. J Agric Food Chem 52, 52155222.
95Netzel, M, Strass, G, Kaul, C, et al. (2002) In vivo antioxidative capacity of a composite berry juice. Food Res Intl 35, 213216.
96Netzel, M, Strass, G, Herbst, M, et al. (2005) The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Res Intl 38, 905910.
97Pedersen, CB, Kyle, J, Jenkinson, AM, et al. (2000) Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur J Clin Nutr 54, 405408.
98Prior, RL, Gu, L, Wu, X, et al. (2007) Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 26, 170181.
99Ruel, G, Pomerleau, S, Couture, P, et al. (2005) Changes in plasma antioxidant capacity and oxidized low-density lipoprotein levels in men after short-term cranberry juice consumption. Metabolism 54, 856861.
100Vinson, JA, Bose, P, Proch, J, et al. (2008) Cranberries and cranberry products: powerful in vitro, ex vivo, and in vivo sources of antioxidants. J Agric Food Chem 56, 58845891.
101Wilms, LC, Boots, AW, de Boer, VC, et al. (2007) Impact of multiple genetic polymorphisms on effects of a 4-week blueberry juice intervention on ex vivo induced lymphocytic DNA damage in human volunteers. Carcinogenesis 28, 18001806.
102McAnulty, SR, McAnulty, LS, Morrow, JD, et al. (2005) Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radic Res 39, 12411248.
103Chaves, AA, Joshi, MS, Coyle, CM, et al. (2009) Vasoprotective endothelial effects of a standardized grape product in humans. Vascul Pharmacol 50, 2026.
104Lotito, SB & Frei, B (2004) Relevance of apple polyphenols as antioxidants in human plasma: contrasting in vitro and in vivo effects. Free Radic Biol Med 36, 201211.
105Mazza, G, Kay, CD, Cottrell, T, et al. (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50, 77317737.
106Parker, TL, Wang, XH, Pazmiño, J, et al. (2007) Antioxidant capacity and phenolic content of grapes, sun-dried raisins, and golden raisins and their effect on ex vivo serum antioxidant capacity. J Agric Food Chem 55, 84728477.
107Rankin, JW, Andreae, MC, Oliver Chen, CY, et al. (2008) Effect of raisin consumption on oxidative stress and inflammation in obesity. Diabetes Obes Metab 10, 10861096.
108Serafini, M, Testa, MF, Villaño, D, et al. (2009) Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med 46, 769774.
109Tesoriere, L, Butera, D, Pintaudi, AM, et al. (2004) Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C. Am J Clin Nutr 80, 391395.
110Vinson, JA, Zubik, L, Bose, P, et al. (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24, 4450.

Keywords

Type Description Title
WORD
Supplementary materials

Lettieri-Barbato et al. supplementary material
Supplementary table

 Word (39 KB)
39 KB

Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis

  • Daniele Lettieri-Barbato (a1), Francesco Tomei (a2), Angela Sancini (a2), Giuseppa Morabito (a1) and Mauro Serafini (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed