Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T22:51:55.584Z Has data issue: false hasContentIssue false

The effect of intragastric infusion of glucose, lipids or acetate on fasting nitrogen excretion and blood metabolites in sheep

Published online by Cambridge University Press:  09 March 2007

J. M. Asplund
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
E. R. Ørskov
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
F. D. DEB. Hovell
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
N. A. Macleod
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Two experiments are reported in which the effect of the intragastric infusion of non-protein energy on fasting nitrogen losses was studied. Expt 1 was a preliminary trial with two 35 kg lambs given 0, 144, 288 or 432 kJ/kg live weight (W)0.75 per d as lipid or glucose infused into the abomasum for periods of 3 d. Expt 2 was of a 4 x 4 Latin square design with four sheep of about 30 kg live weight. The four treatments were control (fasted with water infusion), or the infusion of 144 W/kg W0.75 per d as glucose or lipid into the abomasum or as acetic acid into the reticulo-rumen.

2. Compared with the fasted control, glucose infusion reduced (P < 0.05) N excretion to about 0.6 of that of the control, increased (P < 0.05) plasma glucose, decreased (P < 0.05) plasma urea and β-hydroxybutyrate, and was without effect on plasma amino-N or creatinine excretion.

3. Lipid and acetate infusions were without statistically significant effect on N or creatinine excretion or any of the blood indices measured, with the exception of plasma glucose which was reduced (P < 0.05) with acetate infusion.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.Google Scholar
Agricultural Research Council (1984). The Nutrient Requirements of Ruminant Livestock, Suppl. no. 1. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.Google Scholar
Armstrong, D. G. & Blaxter, K. L. (1957). British Journal of Nutrition 11, 247272.CrossRefGoogle Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1957). British Journal of Nutrition 11, 392408.CrossRefGoogle Scholar
Bergen, W. G. (1979). In Digestive Physiology and Nutrition of Ruminants, vol. 2, pp. 430431 [Church, D. C., editor]. Oregon: O. and B. Books.Google Scholar
Bergman, E. N. (1973). Cornell Veterinarian 63, 341382.Google Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, London 95, 181193.CrossRefGoogle Scholar
Eskeland, B., Pfander, W. H. & Preston, R. L. (1973). British Journal of Nutrition 29, 347355.CrossRefGoogle Scholar
Eskeland, B., Pfander, W. H. & Preston, R. L. (1974). British Journal of Nutrition 32, 201211.CrossRefGoogle Scholar
Flatt, J. P. & Blackburn, G. L. (1974). American Journal of Clinical Nutrition 27, 175187.CrossRefGoogle Scholar
Fuller, M. F. & Crofts, M. (1977). British Journal of Nutrition 38, 479488.CrossRefGoogle Scholar
Hawk, A. B., Oser, B.L. & Summerson, W. H. (1947). Practical Physiological Chemistry. San Francisco: McGraw Hill.Google Scholar
Hovell, F. D. DeB., Ørskov, E. R., Grubb, D. A. & MacLeod, N. A. (1983 a). British Journal of Nutrition 50, 173187.CrossRefGoogle Scholar
Hovell, F. D. DeB., Ørskov, E. R., MacLeod, N. A. & McDonald, I. (1983 b). British Journal of Nutrition 50, 331343.CrossRefGoogle Scholar
Krebs, H. A. (1964). In Mammalian Protein Metabolism, vol. 1, pp. 125176 [Monro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Ku vera, J. C. (1983). Mechanisms of the nitrogen-sparing effect of glucose in fasting sheep. MSc Thesis, University of Aberdeen.Google Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clinical Chemistry 11, 624627.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism, vol. 1, pp. 382482 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.Google Scholar
Ørskov, E. R., Grubb, D. A., Smith, J. S., Webster, A. J. F. & Corrigall, W. (1979 a). British Journal of Nutrition 41, 541551.CrossRefGoogle Scholar
Ørskov, E. R., Grubb, D. A., Wenham, G. & Corrigall, W. (1979 b). British Journal of Nutrition 41, 553558.CrossRefGoogle Scholar
Ørskov, E. R., MacLeod, N. A., Fahmy, S. T. M., Istasse, L. & Hovell, F. D. DeB (1983). British Journal of Nutrition 50, 99107.CrossRefGoogle Scholar
Palmer, D. W. & Peters, T. Jr (1969). Clinical Chemistry 15, 891901.CrossRefGoogle Scholar
Radermacher, P., Grote, H., Herbertz, L. & Reinauer, H. (1982). Infusionstherapie und Klinische Ernahrung 9, 279285.Google Scholar
Tao, R. C. & Asplund, J. M. (1975). Journal of Animal Science 41, 16531659.CrossRefGoogle Scholar
Trinder, P. (1969). Annals of Clinical Biochemistry 6, 2427.CrossRefGoogle Scholar
Weekes, T. E. C. (1979). In Digestive Physiology and Nutrition of Ruminants, vol. 2, pp. 187207 [Church, D. C., editor]. Oregon: O and B Books.Google Scholar
Wolfrom, G. W. & Asplund, J. M. (1979). Journal of Animal Science 49, 752763.CrossRefGoogle Scholar
Zivin, J. A. & Snarr, J. R. (1973). Analytical Biochemistry 52, 456461.CrossRefGoogle Scholar