Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T02:18:19.444Z Has data issue: false hasContentIssue false

The effect of inhibitors of methane production of fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses

Published online by Cambridge University Press:  09 March 2007

R. J. Marty*
Affiliation:
Faculty of Agricultural Sciences, University of Ghent, Belgium
D. I. Demeyer
Affiliation:
Faculty of Agricultural Sciences, University of Ghent, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The fermentation in the presence of four known methane inhibitors was investigated in rumen contents from sheep given molasses ad lib. and showing two different fermentation patterns.

2. The average hydrogen recoveries obtained with the high butyrate and high propionate patterns were 93 ± 2 and 95 ± 2% respectively.

3. Sodium sulphite, chloral hydrate and a hemiacetal of chloral and starch (HCS) all inhibited methane production, and were associated with an accumulation of hydrogen and lactate in rumen contents showing the high butyrate fermentation pattern. Propionate production was slightly stimulated.

4. In rumen contents showing the high propionate fermentation pattern, linseed-oil hydrolysate depressed methane production at high levels only, increased hydrogen and lactate production but depressed all other products, and HCS depressed methane production and slightly increased propionate production.

5. Low hydrogen recoveries in the presence of the inhibitors were probably associated with the utilization of metabolic hydrogen in reactions not accounted for in the scheme under investigation.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

Baldwin, R. L. & (1970). Am. J. clin. Nutr. 23, 1508.CrossRefGoogle Scholar
Baldwin, R. L., Lucas, H. L. & Cabrera, R. (1970). In Physiology of Digestion and Metabolism in the Ruminant p. 319 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Burroughs, W., Frank, N. A., Gerlaugh, P. & Bethke, R. M. (1950). J. Nutr. 40, 9.CrossRefGoogle Scholar
Conway, E. J. (1957). Microdiffusion Analysis and Volumetric Error p. 277. London: Crosby, Lockwood and Son Ltd.Google Scholar
Cottyn, B. G.Boucqué, Ch. V. (1968). J. agric. Fd Chem. 16, 105.CrossRefGoogle Scholar
Czerkawski, J. W. (1969). Wld Rev. Nutr. Diet. 11, 240.CrossRefGoogle Scholar
Czerkawski, J. W., Blaxter, K. L. & Wainman, F. W. (1966). Br. J. Nutr. 20, 349.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1969). Br. J. Nutr. 23, 925.CrossRefGoogle Scholar
Demeyer, D. I. & Henderickx, H. K. (1967). Biochim. Biophys. Acta 137, 484.Google Scholar
Demyer, D. I., Henderickx, H. K. & Van Nevel, C. J. (1972). Proc. Nutr. Soc. 31, 54A.Google Scholar
Demeyer, D. I., Van Nevel, C. J., Henderickx, H. K. & Martin, J. (1969). In Energy Metabolism of Farm Animals p. 139 [Blaxter, K. L., Kielanowski, J. and Thorbek, G., editors]. Newcastle upon Tyne: Oriel Press.Google Scholar
Demeyer, D. I., Van Nevel, C. J., Henderickx, H. K. & Martin, J. (1970). In Energy Metabolism of Farm Animals p. 37 [Schürch, A. and Wenk, C., editors]. Zurich: Juris Druck u. Verlag.Google Scholar
Demeyer, D. I., Van Nevel, C. J. & Henderson, C. (1972). Proceedings of the Second World Congress on Animal Feeding. Madrid Vol. 5, p. 33.Google Scholar
Hungate, R. E. (1950). Bact. Rev. 14, 1.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes p. 269. London: Academic Press Ltd.Google Scholar
Hungate, R. E., Reichl, J. & Prins, R. (1971). Appl. Microbiol. 22, 1104.CrossRefGoogle Scholar
Kowalczyk, J., Ramirez, A. & Geerken, C. M. (1970). Revta cub. Cienc. agric. 4, 187.Google Scholar
Krabill, L. F., Alhassan, W. S. & Satter, L. D. (1969). J. Dairy Sci. 52, 1812.Google Scholar
Lewis, D. (1954). Biochem. J. 56, 391.CrossRefGoogle Scholar
Marty, R. J. (1972). Revta cub. Cienc. agric. 6, 153.Google Scholar
Marty, R. J. & Preston, T. R. (1970). Revta cub. Cienc. agric. 4, 183.Google Scholar
O'Connor, J. J., Myers, G. S. Jr, Maplesden, D. C. & Vander Noot, G. W. (1971). J. Anim. Sci. 32, 994.Google Scholar
Trei, J. E., Scott, G. C. & Parish, R. c. (1972). J. Anim. Sci. 34, 510.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1959). Manometric Techniques p. 70. Minneapolis: Burgess Publishing Co.Google Scholar
Van Nevel, C. J., Demeyer, D. I. & Henderickx, H. K. (1971). Appl. Microbiol. 21, 365.CrossRefGoogle Scholar
Van Nevel, C. J., Demeyer, D. I. & Henderickx, H. K. (1972). Proceedings of the Second World Congress on Animal Feeding. Madrid Vol. 5, p. 27.Google Scholar
Van Nevel, C. J., Henderickx, H. K., Demeyer, D. I. & Martin, J. (1969). Appl. Microbiol. 17, 695.CrossRefGoogle Scholar
Walker, D. J. (1968). Appl. Microbiol. 16, 1672.Google Scholar
Wilde, P. F. & Dawson, R. M. C. (1966). Biochem. J. 98, 469.CrossRefGoogle Scholar
Wolin, M. J. (1960). J. Dairy Sci. 43, 1452.CrossRefGoogle Scholar