Skip to main content Accessibility help
×
Home

The effect of fishmeal supplementation of a straw-based diet on growth and calorimetric efficiency of growth in heifers

  • Isabelle Ortigues (a1), T. Smith (a1), M. Gill (a2), S. B. Cammell (a2) and N. W. Yarrow (a1)...

Abstract

Thirty-two 160 kg dairy heifers were used to measure the effects of increasing dietary protein content on growth and heat production. A basal diet containing (g/kg) 550 sodium hydroxide-treated straw, 220 barley, 220 sugarbeet pulp and 10 urea was offered with 0, 76 and 152 g fishmeal/kg dry matter of the basal diet (F0, F1 and F2 levels respectively). The three diets were each given at two levels of feeding (low, L; high, H): 57.6 g/d per kg metabolic body-weight (W0.75) for the LF0 diet and 74.7 g/d per kg W0.75 for the HFO diet. Apparent digestibility of the diets increased in response to the addition of fishmeal. Mean dry matter digestibility values were 0.67, 0.67, 0.69, 0.66, 0.68 and 0.69 and those for acid-detergent fibre digestibility were 0.60, 0.63, 0.66, 0.58, 0.60 and 0.65 for diets LF0, LF1, LF2, HF0, HF1 and HF2 respectively. Nitrogen retention increased in response to both fishmeal and feeding level. Live-weight gains were 170, 296, 434 g/d for the LF0, LF1 and LF2 diets and 468, 651 and 710 g/d for the HF0, HF1 and HF2 diets respectively. There were significant effects of increasing the plane of feeding and the level of fishmeal in the diet on live-weight gain. Dietary effects on live-weight gains were accompanied by increases in mean energy retention of 23, 45, 82, 94, 160 and 152 kJ/d per kg W0.75 for diets LF0, LF1, LF2, HF0, HF1 and HF2 respectively, but no definite evidence was obtained that dietary supplementation with fishmeal modified the efficiency of utilization of metabolizable energy for growth.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of fishmeal supplementation of a straw-based diet on growth and calorimetric efficiency of growth in heifers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of fishmeal supplementation of a straw-based diet on growth and calorimetric efficiency of growth in heifers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of fishmeal supplementation of a straw-based diet on growth and calorimetric efficiency of growth in heifers
      Available formats
      ×

Copyright

References

Hide All
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.
Agricultural Research Council (1984). Report of the Protein Group of the Agricultural Research Council Working Party on the Nutrient Requirements of Ruminants. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.
Anderson, P. T., Bergen, W. G., Merkel, R. A. & Hawkins, D. R. (1988). The effects of dietary crude protein level on rate, efficiency and composition of gain of growing beef bulls. Journal of Animal Science 66, 19901996.
Balch, C. C. (1967). Problems in predicting the value of non-protein nitrogen as a substitute for protein in rations for farm animals. World Review of Animal Production 3, 8491.
Barry, T. N. (1981). Protein and metabolism in growing lambs fed on fresh ryegrass (Lolium perenne)-clover (Trifolium repens) pasture ad lib. 1. Protein and energy deposition in response to abomasum infusion of casein and methionine. British Journal of Nutrition 46, 521532.
Black, J. L., Gill, M., Thornley, J. H. M., Beever, D. E. & Oldham, J. D. (1987). Simulation of the metabolism of absorbed energy yielding nutrients in young sheep; the efficiency of utilization of lipid and amino acid. Journal of Nutrition 117, 116128.
Blaxter, K. L. & Boyne, A. W. (1978). The estimation of the nutritive value of feeds as energy sources for ruminants and the derivation of feeding systems. Journal of Agricultural Science, Cambridge 90, 4768.
Brouwer, E. (1965). Report of sub-committee on constants and factors. In Energy Metabolism, European Association of Animal Production Publication no. 11 pp. 441443 [Blaxter, K. L., editor]. London: Academic Press.
Cammell, S. B., Beever, D. E., Skelton, K. V. & Spooner, M. C. (1981). The construction of open-circuit calorimeters for measuring gaseous exchange and heat production in sheep and young cattle. Laboratory Practice 30, 115119.
Cammell, S. B., Thomson, D. J., Beever, D. E., Haines, M. J., Dhanoa, M. S. & Spooner, M. C. (1986). The efficiency of energy utilization in growing cattle consuming fresh perennial ryegrass (Lolium perenne cv. Melle) or white clover (Trifolium repens cv. Blanca). British Journal of Nutrition 55, 669680.
Cochran, W. G. & Cox, G. M. (1957). Experimental Designs. New York: John Wiley & Sons Inc.
Cottritl, B. R., Beever, D. E., Austin, A. R. & Osbourn, D. F. (1982). The effect of protein and non-protein nitrogen supplements to maize silage on total amino acid supply in young cattle. British Journal of Nutrition 48, 527541.
Geay, Y. & Robelin, J. (1979). Variation of meat production capacity in cattle due to genotype and level of feeding: genotype-nutrition interaction. Livestock Production Science 6, 263276.
Gill, M. & Beever, D. E. (1982). The effect of protein supplementation on digestion and glucose metabolism in young cattle fed on silage. British Journal of Nutrition 48, 3747.
Gill, M., Thornley, J. H. M., Black, J. L., Oldham, J. D. & Beever, D. E. (1984). Simulation of the metabolism of absorbed energy-yielding nutrients in young sheep. British Journal of Nutrition 52, 621649.
Hartsook, E. W. & Hershberger, T. V. (1971). Interactions of major nutrients in whole animal energy metabolism. Federation Proceedings 30, 14661473.
MacRae, J. C. & Lobley, G. E. (1986). Interactions between energy and protein. In Control of Digestion and Metabolism in Ruminants, pp. 367385 [Milligan, L., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs: Prentice-Hall.
MacRae, J. C., Smith, J. S., Dewey, P. J. S., Brewer, A. C., Brown, D. S. & Walker, A. (1985). The efficiency of utilization of metabolizable energy and apparent absorption of amino acids in sheep given spring-and autumn-harvested dried grass. British Journal of Nutrition 54, 197209.
Oldham, J. D. & Smith, T. (1981). Protein-energy interrelationships for growing and for lactating cattle. In Protein Contribution of Feedstuffs for Ruminants: Application to Feed Formulation, pp. 103130 [Miller, E. L., Pike, I. H. and Van Es, A. J. H., editors]. London: Butterworths.
Ortigues, I. (1987). Nutrient supply, growth and calorimetric efficiency in heifers offered straw rich diets. PhD Thesis, University of Reading.
Ortigues, I., Smith, T., Oldham, J. D. & Gill, M. (1988). The effects of fishmeal on growth and calorimetric efficiency in heifers offered straw-based diets. In Energy Metabolism, pp. 6568 [Van der Honing, Y. and Close, W. H., editors]. Wageningen: Centre for Agricultural Publishing and Documentation.
Ørskov, E. R., McDonald, I., Grubb, D. A. & Pennie, K. (1976). The nutrition of the early weaned lamb. IV. Effects on growth rate, food utilization and body composition of changing from a low to a high protein diet. Journal of Agricultural Science, Cambridge 86, 411423.
Ribeiro, J. M. C. R., MacRae, J. C. & Webster, A. J. F. (1981). An attempt to explain differences in the nutritive value of spring- and autumn-harvested dried grass. Proceedings of the Nutrition Society 40, 12A.
Robb, J., Evans, P. J. & Fisher, C. (1980). A study of the nutritional energetics of sodium hydroxide treated straw pellets in rations fed to growing lambs. In Energy Metabolism, pp. 6367 [Mount, L. E., editor]. London: Butterworths.
Rooke, J. A. & Armstrong, D. G. (1987). The digestion by cattle of silage and barley diets containing increasing quantities of fishmeal. Journal of Agricultural Science, Cambridge 109, 261272.
Smith, T. (1978). The utilization of poor quality roughages by yearling dairy heifers. PhD Thesis, University of Reading.
Smith, T. (1979). The collection of faeces and urine from steers. Journal of the Science of Food and Agriculture 30, 215217.
Smith, T., Broster, V. J. & Hill, R. E. (1980 a). A comparison of sources of supplementary nitrogen for young cattle receiving fibre rich diets. Journal of Agricultural Science, Cambridge 95, 687695.
Smith, T., Broster, W. H. & Siviter, J. W. (1980 b). An assessment of barley straw and oat hulls as energy sources for yearling cattle. Journal of Agricultural Science, Cambridge 95, 677686.
Steen, R. W. J. (1985). Protein supplementation of silage-based diets for calves. Animal Production 41, 292300.
Sutton, J. D. & Johnson, V. W. (1969). Fermentation in the rumen of cows given rations containing hay and flaked maize or rolled barley in widely different proportions. Journal of Agricultural Science, Cambridge 73, 459468.
Terry, R. A. & Outen, G. E. (1973). The determination of cell-wall constituents in barley and maize. Chemistry and Industry 23, 11161117.
Thomson, D. J., Haines, M. J., Austin, A. R., Cammell, S. B., Beever, D. E., Dhanoa, M. S. & Barnes, R. L. (1983). The voluntary intake, gain, tissue retention and efficiency of energy and protein utilization by Friesian steers of fresh perennial ryegrass and white clover. Animal Production 36, 501.
Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fibre and lignin. Journal of the Association of Official Agricultural Chemists 46, 829835.
Vermorel, M. & Bickel, H. (1980). Utilization of feed energy by growing ruminant animals. Annales de Zootechnie 29, (n° hors sérié) 127143.
Wainman, F. W., Smith, J. S. & Dewey, P. J. S. (1975). The nutritive value for sheep of ruminant diet AA6, a complete cob diet containing 30% barley straw. Journal of Agricultural Science, Cambridge 84, 109111.
Walker, D. M. & Norton, B. W. (1971). The utilization of the metabolizable energy of diets of different protein content by the milk-fed lamb. Journal of Agricultural Science, Cambridge 77, 363369.
Whitelaw, F. G., Milne, J. S., Ørskov, E. R. & Smith, J. S. (1986). The nitrogen and energy metabolism of lactating cows given abomasal infusions of casein. British Journal of Nutrition 55, 537556.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed