Skip to main content Accessibility help
×
Home

Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men

  • Kristy A. Hunter (a1), Lynn C. Crosbie (a1), Graham W. Horgan (a2), George J. Miller (a3) and Asim K. Dutta-Roy (a1)...

Abstract

The aim of the present study was to investigate the effects of stearic acid-, oleic acid- and linoleic acid-rich meals on postprandial haemostasis in young healthy volunteers whose background diets had been controlled for 14 d in a residential study. Six healthy male volunteers were assigned randomly to consume diets rich in stearic acid, oleic acid or linoleic acid for 14 d. On day 15, plasma lipids and haematological variables were measured in the fasted state, and 3 and 7 h (factor VII and prothrombin activation peptide fragments, 1 and 2 only) after consumption of a test meal. Test meals provided 40 % of the subjects' daily energy requirement, with 41 % of the energy provided as fat, 17 % energy as protein and 42 % energy as carbohydrate. The mean fat content of the meal was 45 (SD 5) g. Significant alterations from fasted values were observed for activated factor VII (P<0·05 after 7 h), factor VII antigen (P<0·05 after 7 h), prothrombin activation peptide fragments 1 and 2 (P<0·05 after 7 h) and plasminogen activator inhibitor type 1 activity (P<0·01 after 3 h) after consumption of each of the three meals. No significant differences were observed in haemostatic values (factor VII coagulant activity, factor VII antigen, tissue plasminogen activator activity prothrombin activation peptide fragment and plasminogen activator inhibitor type-1) with regard to diet except for activated factor VII at 3 h; values were higher after the oleic acid- and linoleic acid-rich meals than after the stearic acid-rich meal (P<0·05). After consumption of each of the three meals, chylomicrons contained proportionately more palmitic acid than the lipids ingested. The present study shows that there are demonstrable changes in postprandial haemostasis when young healthy volunteers with controlled dietary backgrounds are challenged with a physiological fat load. These changes are independent of the fatty acid composition of the test meals.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Asim K. Dutta-Roy, present address Institute for Nutrition Research, University of Oslo, P.O. Box 1046 Blindern, N-0316 Oslo, Norway, fax +47 22 851341, email akdr@hotmail.com

References

Hide All
Aoe, S, Yamamura, J-C, Matsuyama, H, Hase, M, Shiota, M & Miura, S (1997) The positional distribution of dioleoyl-palmitoyl glycerol influences lymph chylomicron transport, composition and size in rat. Journal of Nutrition 127, 12691273.
Barradas, MA, Christofides, JA, Jeremy, JY, Mikhailidis, DP, Fry, DE & Dandona, P (1990) The effect of olive oil supplementation on human platelet function, serum cholesterol-related variables and plasma fibrinogen concentrations: a pilot study. Nutrition Research 10, 403411.
Bladbjerg, EM, Marckmann, P, Sandstrom, B & Jespersen, J (1994) Non-fasting factor VII coagulant activity (FVII:C) increased by high-fat diet. Thrombosis and Haemostasis 71, 755758.
Bligh, BE & Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911917.
Bonanome, A & Grundy, S (1989) Intestinal absorption of stearic acid after consumption of high fat meals in humans. Journal of Nutrition 119, 15561560.
Bronte-Stewart, B, Keys, A, Brock, JF, Moodie, AD, Keys, MH & Anronis, A (1955) Serum cholesterol, diet and coronary heart disease: an inter-racial survey in the Cape Peninsula. Lancet ii, 11031108.
Cooper, JA, Miller, GJ, Bauer, KA, Morrissey, JH, Meade, TW, Howarth, DJ, Barzegar, S, Mitchell, JP & Rosenberg, RD (2000) Comparison of novel haemostatic factors and conventional risk factors for prediction of coronary heart disease. Circulation 102, 28162822.
Dutta-Roy, AK (1994) Insulin mediated processes in platelets, erythrocytes and monocytes/macrophages: Effects of essential fatty acid metabolism. Prostaglandins Leukotrienes and Essential Fatty Acids 51, 385399.
Dutta-Roy, AK, Ray, TK & Sinha, AK (1986) Prostacyclin stimulation of the activation of blood coagulation factor X by platelets. Science 231, 385389.
Emken, EA (1994) Metabolism of dietary stearic acid relative to other fatty acids in human subjects. American Journal of Clinical Nutrition 60 Suppl., 1023S1028S.
Folsom, AR, Wu, KK, Rosamond, WD, Sharret, AR & Chambless, LE (1997) Prospective study of hemostatic factors and incidence of coronary heart disease: the atheroslcerotic risk in communities (ARIC) study. Circulation 96, 11021108.
Freese, R & Mutanen, M (1995) Postprandial changes in platelet function and coagulation factors after high-fat meals with different fatty acid compositions. European Journal of Clinical Investigation 49, 658664.
Friedewald, WJ, Levy, RJ & Fredrickson, DS (1972) Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of preparative ultracentrifuge. Clinical Chemistry 18, 499506.
Girelli, D, Olivieri, O, Argliano, PL, Guarini, P, Bassi, A & Corrocher, R (1996) Influences of lipid and non-lipid nutritional parameters on factor VII coagulant activity in normal subjects: the Nove Study. European Journal of Clinical Investigation 26, 199204.
Hoak, JC (1994) Stearic acid, clotting, and thrombosis. American Journal of Clinical Nutrition 60 Suppl., 1050S1053S.
Hunter, KA, Crosbie, LC, Weir, A, Miller, GJ & Dutta-Roy, AK (1999) The effects of structurally defined triglycerides of differing fatty acid composition on postprandial haemostasis in young, healthy men. Atherosclerosis 142, 151158.
Hunter, KA, Crosbie, LC, Weir, A, Miller, GJ & Dutta-Roy, AK (2000) A residential study comparing the effects of diets rich in stearic acid, oleic acid and linoleic acid on fasting blood lipids and haemostatic variables in young healthy men. Journal of Nutritional Biochemistry 11, 408416.
Junker, R, Heinrich, J, VandeLoo, J & Assmann, G (1997) Coagulation factor VII and the risk of coronary heart disease in healthy men. Arteriosclerosis, Thrombosis and Vascular Biology 17, 15391544.
Kapur, R, Hoffman, CJ, Bhushan, V & Hultin, MB (1996) Postprandial elevation of activated factor VII in young adults. Arteriosclerosis, Thrombosis and Vascular Biology 16, 13271332.
Karpe, F, Steiner, G, Uffelmann, K, Olivecrona, T & Hamsten, A (1994) Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 106, 8392.
Khosla, P & Sundram, K (1996) Effects of dietary fatty acid composition on plasma cholesterol. Progress in Lipid Research 35, 93132.
Kubow, S (1996) The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis. Journal of Nutritional Biochemistry 7, 530541.
Lambert, MC, Botham, KM & Mayes, PA (1996) Modification of the fatty acid composition of dietary oils and fats on incorporation into chylomicrons and chylomicron remnants. British Journal of Nutrition 76, 435445.
Lindgren, FT, Jensen, LC & Hatch, FT and GJNelson (1972) The isolation and quantitation of serum lipoproteins. In Blood Lipids and Lipoproteins: Quantitation, Composition and Metabolism pp. 181274 [Nelson, GJ, editor]. New York: Wiley-Interscience.
Lopez-Segura, F, Velasco, F, Lopez-Miranda, J, Castro, P, Lopez-Pedrera, J, Torres, A, Trujillo, J, Ordovas, JM & Perez-Jimenez, F (1996) Monounsaturated fatty acid-enriched diet decreases plasma plasminogen activator inhibitor type 1. Arteriosclerosis, Thrombosis and Vascular Biology 16, 8288.
Marckmann, P, Sandstrom, B & Jesepersen, J (1993) Dietary effects on circadian fluctuation in human blood coagulation factor VII and fibrinolysis. Atherosclerosis 101, 225234.
Mattson, FH & Grundy, SM (1985) Comparison of the effects of dietary saturated, monounsaturated and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. Journal of Lipid Research 26, 194202.
Meade, TW, Mellows, S, Brozovic, MM, Miller, GJ, Chakrabarti, RR, North, WRS, Haines, AP, Stirling, Y, Imeson, JD & Thomson, SG (1986) Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart study. Lancet ii, 533537.
Miller, GJ (1997) Dietary fatty acids and blood coagulation. Prostaglandins Leukotrienes and Essential Fatty Acids 57, 389394.
Miller, GJ, Bauer, KA, Barzegar, S, Foley, AJ, Mitchell, JP, Cooper, JA & Rosenberg, RD (1995) The effects of quality and timing of venepuncture on markers of blood coagulation in healthy middle-aged men. Thrombosis and Haemostasis 73, 8186.
Miller, GJ, Martin, JC, Mitropoulos, KA, Reeves, BEA, Thompson, RL, Meade, TW, Cooper, JA & Cruickshank, JK (1991) Plasma factor VII is activated by postprandial triglyceridaemia irrespective of dietary fat composition. Atherosclerosis 86, 163171.
Miller, GJ, Stirling, Y, Esnouf, MP, Heinrich, J, van de Loo, J, Kienast, J, Wu, KK, Morrissey, JH, Meade, TW, Martin, JC, Imeson, JD, Cooper, JA & Finch, A (1994) Factor VII-deficient plasmas depleted of protein C raise the sensitivity of the factor VII bioassay to activated factor VII: an international study. Thrombosis and Haemostasis 71, 3845.
Mitropoulos, KA, Miller, GJ, Martin, C, Reeves, BEA & Cooper, JA (1994) Dietary fat induces changes in factor VII coagulant activity through effects on plasma free stearic acid concentrations. Arteriosclerosis and Thrombosis 4, 943951.
Morrissey, JH, Macik, BG, Neuenschwander, PF & Comp, PC (1993) Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81, 734744.
Nordoy, A, Lagarde, M & Renaud, S (1984) Platelets during alimentary hyperlipaemia induced by cream and cod liver oil. European Journal of Clinical Investigation 14, 339345.
Orth, M, Luley, C, Mayer, H & Wieland, H (1995) Responsiveness of ATIII and coagulation factors V and VII to a standardised oral fat load. Thrombosis Research 80, 265270.
Roche, HM & Gibney, MJ (1997) Postprandial coagulation factor VII activity: The effect of monounsaturated fatty acids. British Journal of Nutrition 77, 537549.
Salomaa, V, Rasi, V, Pekkanen, J, Jauhiainen, M, Vahtera, E, Pietinen, P, Korhonen, H, Kuulasmaa, K & Ehnholm, C (1993) The effects of saturated fat and n-6 polyunsaturated fat on postprandial lipaemia and hemostatic activity. Atherosclerosis 103, 111.
Sanders, TAB, Miller, GJ, de Grassi, T & Yahia, N (1996) Postprandial activation of coagulant factor VII by long-chain dietary fatty acids. Thrombosis and Haemostasis 76, 369371.
Schumaker, VN & Puppione, DL (1986) Sequential flotation ultracentrifugation. Methods in Enzymology 128, 155170.
Silviera, A, Karpe, F, Blomback, M, Steiner, G, Walldius, G & Hamsten, A (1994) Activation of coagulation factor VII during alimentary lipemia. Arteriosclerosis and Thrombosis 14, 6069.
Tholstrup, T, Andreasen, K & Sandstrom, B (1996) Acute effect of high-fat meals rich in either stearic or myristic acid on hemostatic factors in healthy young men. American Journal of Clinical Nutrition 64, 168176.
Wilcox, JN, Smith, KM, Schwartz, SM & Gordon, D (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proceedings of National Academy of Sciences USA 86, 28392843.

Keywords

Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men

  • Kristy A. Hunter (a1), Lynn C. Crosbie (a1), Graham W. Horgan (a2), George J. Miller (a3) and Asim K. Dutta-Roy (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed