Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:37:56.768Z Has data issue: false hasContentIssue false

The effect of dietary protein deprivation on protein synthesis in the isolated liver parenchymal cell

Published online by Cambridge University Press:  09 March 2007

Anne G. Grant
Affiliation:
Department of Clinical Investigation, MRC Clinical Research Centre, Harrow, Middlesex
R. Hoffenberg
Affiliation:
Department of Clinical Investigation, MRC Clinical Research Centre, Harrow, Middlesex
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Parenchymal cells were isolated from the liver of rats that had been deprived of dietary protein for 3 weeks.

2. The cells were two-thirds the diameter of those derived from livers of normal animals and consumed oxygen at a rate of 16.2±2.7 μl/h per 106 viable cells, half the normal value.

3. Albumin and transferrin were synthesized at rates of 0.94±0.12 and 0.60±0.07 μg/h per 106 viable cells respectively and urea at a rate of 0.77±0.12 μg/h per 106 cells. This represents a 25-50% decrease in the rates of synthesis measured in cells isolated from normal livers.

4. The results are discussed in relation to the long-term effects of malnutrition on liver cell function.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1977

References

Chandrasakharam, N., Fleck, A. & Munro, H. N. (1967). J. Nutr. 92, 497.Google Scholar
Deosthale, Y. G. & Tulpule, P. G. (1969). Indian J. Biochem. 6, 115.Google Scholar
Eagle, H. (1955). Science, N.Y. 122, 501.CrossRefGoogle Scholar
Eagle, H. (1959). Science, N.Y. 130, 432.Google Scholar
East, A. G., Louis, L. N. & Hoffenberg, R. (1973). Expl Cell Res. 76, 41.Google Scholar
Grant, A. G. & Black, E. G. (1974). Eur. J. Biochem. 47, 397.CrossRefGoogle Scholar
Haider, M. & Tarver, H. (1969). J. Nutr. 99, 433.CrossRefGoogle Scholar
Hoffenberg, R., Gordon, A. H. & Black, E. G. (1971). Biochem. J. 122, 129.CrossRefGoogle Scholar
Hoffenberg, R., Gordon, A. H., Black, E. G. & Louis, L. N. (1970). Biochem. J. 118, 401.Google Scholar
Howard, R. B. & Pesch, L. H. (1968). J. biol. Chem. 243, 3105.CrossRefGoogle Scholar
James, W. P. T. & Hay, A. M. (1968). J. Clin. Invest. 47, 1958.Google Scholar
Jeejeebhoy, K. N., Bruce-Robertson, A., Ho, J. & Sodtke, U. (1973). Ciba Fdn Symp. 9, 217.Google Scholar
Kido, H., Shimazu, Y., Ueki, M. & Ogata, K. (1973). J. Biochem. Tokyo 74, 747.CrossRefGoogle Scholar
Kirsch, R., Frith, L., Black, E. & Hoffenberg, R. (1968). Nature, Lond. 217, 578.CrossRefGoogle Scholar
Mancini, G., Carbonara, A. O. & Heremans, J. F. (1965). Immunochem. 2, 235.CrossRefGoogle Scholar
Minchin-Clarke, H. G. & Freeman, T. (1968). Clin. Sci. 35, 403.Google Scholar
Morgan, E. H. & Peters, T. Jr (1971). J. biol. Chem. 246, 3500.CrossRefGoogle Scholar
Munro, H. N., Naismith, D. J. & Wikramanayake, T. W. (1953). Biochem. J. 54, 198.Google Scholar
Peters, T. Jr & Peters, J. C. (1972). J. biol. Chem. 247, 3858.CrossRefGoogle Scholar
Ramsden, D. N. & Louis, L. N. (1973). J. Chromat. 86, 87.CrossRefGoogle Scholar
Schimke, R. T. (1962 a). J. biol. Chem. 237, 459.Google Scholar
Schimke, R. T. (1962 b). J. biol. Chem. 237, 1921.Google Scholar
Stephen, J. M. L. & Waterlow, J. C. (1968). Lancet i, 118.Google Scholar
Tavill, A. S., East, A. G., Black, E. G., Nadkarni, D. & Hoffenberg, R. (1973). Ciba Fdn Symp. 9, 155.Google Scholar
Wannemacher, R. W., Wannemacher, C. F. & Yatvin, M. B. (1971). Biochem. J. 124, 385.CrossRefGoogle Scholar
Wanson, J. C., Mosselmans, R. & Baudhuin, P. (1973). Archs int. Physiol. Biochim. 81, 397.Google Scholar
Weibel, E. R., Stäubi, W., Gnägi, H. R. & Hess, F. A. (1969). J. cell. Biol. 42, 68.CrossRefGoogle Scholar
Wikramanayake, T. W., Heagy, F. C. & Munro, H. N. (1953). Biochim. biophys. Acta 11, 566.CrossRefGoogle Scholar