Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T15:32:14.563Z Has data issue: false hasContentIssue false

Effect of dietary changes on intestinal absorption of L-methionine and L-methionyl-L-methionine in the rat

Published online by Cambridge University Press:  24 July 2007

Maria T. Lis
Affiliation:
The British Industrial Biological Research Association, Woodmansterne Road, Carshalton, Surrey
R. F. Crampton
Affiliation:
The British Industrial Biological Research Association, Woodmansterne Road, Carshalton, Surrey
D. M. Matthews
Affiliation:
Department of Experimental Chemical Pathology, Vincent Square Laboratories of Westminster Hospital, I 24 Vauxhall Bridge Road, London SWI
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The absorption rates of L-methionine and L-methionyl-L-methionine (dimethionine) from the upper jejunum and lower ileum of the rat were studied in vivo after different dietary treatments. Rates were expressed per unit gut length and per unit gut weight; the former was considered to be the more satisfactory under the different dietary conditions.

2. The dietary treatments were either short-term (10 d) or long-term (40–84 d).

3. The rate of absorption of methionine increased in the jejunum after a restricted dietary intake, a high-protein diet or a high-methionine diet, but decreased after long-term protein deprivation. Short-term dietary restriction had a similar effect on methionine absorption in jejunum and ileum, though less pronounced in the latter. The rate of absorption of dimethionine was less influenced by dietary changes than that of methionine.

4. Under all conditions studied, the absorption rate of methionine was greater when presented as the dipeptide than when presented as the equivalent amount of free amino acid. This confirms that dimethionine is taken up intact from the intestinal lumen, and it seems likely that there are different mechanisms of mucosal uptake for methionine and its dipeptide.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Adibi, S. A. & Allen, E. R. (1970). Gastroenterology 59, 404.CrossRefGoogle Scholar
Asatoor, A. M., Cheng, B., Edwards, K. D.G., Lant, A. F., Matthews, D. M., Milne, M. D., Navab, F. & Richards, A. J. (1970). Gut 11, 380.CrossRefGoogle Scholar
Cheng, B., Navab, F., Lis, M. T., Miller, T. N. & Matthews, D. M. (1971). Clin. Sci. 40, 247.CrossRefGoogle Scholar
Craft, I. L. (1970). clin. sci. 38, 287.CrossRefGoogle Scholar
Craft, I. L., Geddes, D., Hyde, C. W., Wise, I. J. & Matthews, D. M. (1968). Gut 9, 425.Google Scholar
Crampton, R. F., Lis, M. T. & Matthews, D. M. (1970). J. Physiol., Land. 206, 66.Google Scholar
Debnilm, E. S. & Levin, R. J. (1970). J. Physiol., Lond. 209, 2P..Google Scholar
Esposito, G. (1967). Proc. Sac. exp. Biol. Med. 125, 452.CrossRefGoogle Scholar
Gangolli, S., Simson, P., Lis, M. T., Crampton, R. F. & Matthews, D. M. (1970). Clin. Sci. 39, 18P.Google Scholar
Hellier, M. D., Perrett, D. & Holdsworth, C. D. (1970). Br. med. J. 4, 782.CrossRefGoogle Scholar
Hindmarsh, J. T., Kilby, D., Ross, B. & Wiseman, G. (1967). J. Physiol., Lond. 188, 207.Google Scholar
Hopper, A. F., Wannemacher, R. W. Jr & McGovern, P. A. (1968). Proc. Sac. exp. Biol. Med. 128, 695.CrossRefGoogle Scholar
Kershaw, T. G., Neame, K. D. & Wiseman, G. (1960). J. Physiol., Lond. 152, 182.Google Scholar
Kirsch, R. E.,Saunders, S. I. & Brock, J. F. (1968). Am. J. clin. Nutr. 21, 1302.CrossRefGoogle Scholar
Kujalova, V. & Fábry, P. (1960). Physiologia bohemoslow. 9, 35.Google Scholar
Levin, l.. 3. (1967). Br. med. Bull. 23, 29.Google Scholar
Levin, R. J., Newey, H. & Smyth, D. H. (1965). J. Physiol., Lond. 177, 58.Google Scholar
Lis, M. T., Crampton, R. F. & Matthews, D. M. (1971). Biochim. biophys. Acta 233, 453.CrossRefGoogle Scholar
Madge, D. S. (1970). Comp. Biochem. Physiol. 32, I.CrossRefGoogle Scholar
Matthews, D. M., Craft, I. L., Geddcs, D. M., Wise, I. J. & Hyde, C. W. (1968). Clin. Sci. 35, 415.Google Scholar
Matthews, D. M., Lis, M. T., Cheng, B. & Crampton, R. F. (1969). Clin. Sci. 37, 751.Google Scholar
Neale, R. J. & Wiseman, G. (1969). J. Physiol., Lond. 205, 159.Google Scholar
Neame, K. D. & Wiseman, G. (1959). J. Physiol., Lond., 146, 10P.Google Scholar
Newey, H., Sanford, P. A. & Smyth, D. H. (1970). J. Physiol., Lond. 208, 705.CrossRefGoogle Scholar
Newey, H. & Smyth, D. H. (1959). J. Physiol., Lond. 145, 48.Google Scholar
Newey, H. & Smyth, D. H. (1960). J. Physiol., Lond. 152, 367.CrossRefGoogle Scholar
Newey, H. & Smyth, D. H. (1962). J. Physiol., Lond. 164, 527.CrossRefGoogle Scholar
Newey, H. & Smyth, D. H. (1967). Proc. Nutr. Soc. 26, 5.CrossRefGoogle Scholar
Payne, J. W. (1968). J. biol. Chem. 243, 3395.Google Scholar
Solimano, G., Burgess, E. A. & Levin, B. (1967). Br. J. Nutr. 21, 5.CrossRefGoogle Scholar
Steiner, M., Fdrrish, G. C. M. & Gray, S. J. (1969). Am. J. clin. Nutr. 22, 871.CrossRefGoogle Scholar
Steiner, M. & Gray, S. J. (1969). Am. J. Physiol. 217, 747.Google Scholar
Tarlow, M. J., Seakins, J. W. T., Lloyd, J. K., Matthews, D. M., Cheng, B. & Thomas, A. J. (1970). Clin. Sci. 39, 18P.CrossRefGoogle Scholar
Wiseman, G., Neame, K.D., Ghadially, F. N. (1959). Br. J. Cancer 13, 282.Google Scholar
Wright, C. L. & Barber, H. E. (1969). Biochem. J. 115, 107..CrossRefGoogle Scholar
Ziemlanski, S., Cieblak, D., Pliszka, B. & Szczpgiel, A. (1967). Nahrung 11, 559.Google Scholar