Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-08T02:41:18.415Z Has data issue: false hasContentIssue false

Dynamics of large ciliate protozoa in the rumen of cattle fed on diets of freshly cut grass

Published online by Cambridge University Press:  09 March 2007

R. A. Leng
Affiliation:
Department of Biochemistry, Microbiology and Nutrition, Faculty of Rural Science, University of New England, Armidale, NSW 2351, Australia
D. Dellow
Affiliation:
DSZR, Private Bag, Palmerston North, New Zealand
G. Waghorn
Affiliation:
DSZR, Private Bag, Palmerston North, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The dynamics of large ciliate (holotrich) protozoa (Isotricha and Dasytricha spp.) in the rumen of cattle given cut, fresh ryegrass (Lolium multiflorium Lam) were studied by means of a single intrarumen injection of 14C-labelled protozoa prepared in vitro by adding [Me 14C]choline to rurnen fluid containing protozoa and incubating at 39° for 2 h.

2. An indication of the lysis rate of protozoa in the rumen was obtained from the radioactivity apparently lost through the methane pool.

3. The turnover time of the holotrich protozoa indicates that these protozoa were extensively retained in the rumen and that only a small proportion of those produced in the rumen flowed out in the digesta. This was supported by the estimation of the rate of lysis which was approximately 85% of the turnover rate in the rurnen.

4. The apparent production rate of the larger protozoa indicates that they contribute only about 9% of the predicted net microbial protein synthesis in the rumen.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Bailey, R. W. (1958). Biochemistry Journal 68, 669672.CrossRefGoogle Scholar
Bauchop, T. (1980). In Contemporary Microbial Ecology, pp. 305326 [ Ellwood, D. C., Hedgerz, J. N., Latham, M. J., Lynch, J. M. and Slater, J. H., editors]. Academic Press: London.Google Scholar
Blaumenkrantz, N. & Asboe-Hansen, G. (1973). Analytical Biochemistry 54, 484489.CrossRefGoogle Scholar
Clare, N. T. & Stevenson, A. E. (1964). New Zealand Journal of Agricultura1 Research 7, 198204.CrossRefGoogle Scholar
Clarke, R. T. J. (1965). New Zealand Journal of Agricultural Research 8, 16.CrossRefGoogle Scholar
Clarke, R. T. J., Ulyatt, M. J. & Andrew, J. (1982). Applied and Environmental Microbiology 43, 12011204.CrossRefGoogle Scholar
Coleman, G. S. (1985). Journal of Agricultural Science, Cambridge 105, 3943.CrossRefGoogle Scholar
Downes, A. M. & McDonald, I. W. (1964). British Journal of Nutrition 18, 153162.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957). Journal of Biological Chemistry 226 479509.CrossRefGoogle Scholar
Goering, H. K. & Van Soest, P. J. (1975). Forage Fibre Analyses, Agriculture Handbook, United States Department of Agriculture, p. 379. Washington, DC: United States Department of Agriculture.Google Scholar
Leng, R. A. (1982 a). In Nutritional Limits to Animal Production from Pastures – an International Symposium, pp. 427453 [ Hacker, J. B., editor]. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Leng, R. A. (1982 b). British Journal of Nutrition 48. 399415.CrossRefGoogle Scholar
Leng, R. A. (1984). Proceedings of the Australian Society of Animal Production 15, 428430.Google Scholar
Leng, R. A., Gill, M., Kempton, T. J., Rowe, J. B., Nolan, J. V., Stachiw, S. J. & Preston, T. R. (1981). British Journal of Nutrition 46, 371384.CrossRefGoogle Scholar
Leng, R. A., Nolan, J. V., Cumming, R., Edwards, S. R. & Graham, C. A. (1984). Journal of Agricultural Science, Cambridge 102, 609613.CrossRefGoogle Scholar
Murphy, M. R., Drone, P. E. and Woodford, S. T. (1985). Applied and Environmental Microbiology 49, 13291331.CrossRefGoogle Scholar
Rowe, J. B. (1978). Studies on the interrelationship between fermentation, digestion and metabolism in sheep. PhD Thesis, University of New England, Armidale, Australia.Google Scholar
Roy, J. H. B., Balch, C. C., Miler, E. L., Ørskov, E. R. & Smith, R. H. (1977). In Proceedings of the 2nd International Symposium on Protein Metabolism and Nutrition, pp. 126129, EAAP Publicationno. 22. Wageningen: Pudoc.Google Scholar
Schwartz, H. M.& Gilchrist, F. M. C. (1975). In Digestion and Metabolism in the Ruminant, pp. 165179 [ McDonald, I. W. and Warner, A. C. I, editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Shipley, R. A. and Clark, R. E. (1972). Tracer Methods for in Vivo Kinetics. New York:Academic Press.Google Scholar
Valdez, R. E., Alvares, F. J., Ferreiro, H. M., Guerra, F., Lopez, J., Priego, A., Blackburn, T. H., Leng, R. A. & Preston, T. R. (1977). Tropical Animal Production 2, 260270.Google Scholar
Warner, A. C. I. (1962). Journal of General Microbiology 28, 119128.CrossRefGoogle Scholar
Weller, R. A. & Pilgrim, A. F. (1974). British Journal of Nutrition 32, 341351.CrossRefGoogle Scholar