Skip to main content Accessibility help
×
Home

DNA methylation and cognitive functioning in healthy older adults

  • Olga J. G. Schiepers (a1), Martin P. J. van Boxtel (a1), Renate H. M. de Groot (a1) (a2) (a3), Jelle Jolles (a1) (a2), Frans J. Kok (a4), Petra Verhoef (a4) (a5) (a6) and Jane Durga (a4) (a5) (a7)...

Abstract

Long-term supplementation with folic acid may improve cognitive performance in older individuals. The relationship between folate status and cognitive performance might be mediated by changes in methylation capacity, as methylation reactions are important for normal functioning of the brain. Although aberrant DNA methylation has been implicated in neurodevelopmental disorders, the relationship between DNA methylation status and non-pathological cognitive functioning in human subjects has not yet been investigated. The present study investigated the associations between global DNA methylation and key domains of cognitive functioning in healthy older adults. Global DNA methylation, defined as the percentage of methylated cytosine to total cytosine, was measured in leucocytes by liquid chromatography–MS/MS, in 215 men and women, aged 50–70 years, who participated in the Folic Acid and Carotid Intima-Media Thickness (FACIT) study (clinical trial registration number NCT00110604). Cognitive performance was assessed by means of the Visual Verbal Word Learning Task, the Stroop Colour-Word Interference Test, the Concept Shifting Test, the Letter–Digit Substitution Test and the Verbal Fluency Test. Using hierarchical linear regression analyses adjusted for age, sex, level of education, alcohol consumption, smoking status, physical activity, erythrocyte folate concentration and 5,10-methylenetetrahydrofolate reductase 677 C → T genotype, we found that global DNA methylation was not related to cognitive performance on any of the domains measured. The present study results do not support the hypothesis that global DNA methylation, as measured in leucocytes, might be associated with cognitive functioning in healthy older individuals.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      DNA methylation and cognitive functioning in healthy older adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      DNA methylation and cognitive functioning in healthy older adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      DNA methylation and cognitive functioning in healthy older adults
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: O. J. G. Schiepers, fax +31 433884092, email olga.schiepers@maastrichtuniversity.nl

References

Hide All
1 Kado, DM, Karlamangla, AS, Huang, MH, et al. (2005) Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med 118, 161167.
2 Costello, JF & Plass, C (2001) Methylation matters. J Med Genet 38, 285303.
3 Miller, CA & Sweatt, JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53, 857869.
4 Levenson, JM, Roth, TL, Lubin, FD, et al. (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281, 1576315773.
5 Costa, E, Chen, Y, Davis, J, et al. (2002) REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol Interv 2, 4757.
6 Gräff, J & Mansuy, IM (2009) Epigenetic dysregulation in cognitive disorders. Eur J Neurosci 30, 18.
7 Tsankova, N, Renthal, W, Kumar, A, et al. (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8, 355367.
8 Ulrey, CL, Liu, L, Andrews, LG, et al. (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14, R139R147 (Spec No. 1).
9 Niculescu, MD & Zeisel, SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132, 2333S2335S.
10 Jacob, RA, Gretz, DM, Taylor, PC, et al. (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 128, 12041212.
11 Friso, S, Choi, SW, Girelli, D, et al. (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 99, 56065611.
12 Durga, J, Van Boxtel, MPJ, Schouten, EG, et al. (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369, 208216.
13 Drinkwater, RD, Blake, TJ, Morley, AA, et al. (1989) Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA. Mutat Res 219, 2937.
14 Brait, M, Ford, JG, Papaiahgari, S, et al. (2009) Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomarkers Prev 18, 29842991.
15 Kok, RM, Smith, DE, Barto, R, et al. (2007) Global DNA methylation measured by liquid chromatography–tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects. Clin Chem Lab Med 45, 903911.
16 Frosst, P, Blom, HJ, Milos, R, et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10, 111113.
17 Ubbink, JB, Hayward-Vermaak, WJ & Bissbort, S (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr 565, 441446.
18 De Bie, SE (1987) Standaardvragen 1987: Voorstellen voor uniformering van vraagstellingen naar achtergrondkenmerken en interviews (in Dutch) (Standard Questions 1987: Proposal for Uniformization of Questions Regarding Background Variables and Interviews), 2nd ed. Leiden: Leiden University Press.
19 Washburn, RA, Smith, KW, Jette, AM, et al. (1993) The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol 46, 153162.
20 Yuasa, Y, Nagasaki, H, Akiyama, Y, et al. (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124, 26772682.
21 Fuso, A, Nicolia, V, Pasqualato, A, et al. (2011) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32, 187199.
22 Scarpa, S, Fuso, A, D'Anselmi, F, et al. (2003) Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 541, 145148.
23 Schilling, E & Rehli, M (2007) Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics 90, 314323.
24 Cohen, J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, NJ: Erlbaum.

Keywords

DNA methylation and cognitive functioning in healthy older adults

  • Olga J. G. Schiepers (a1), Martin P. J. van Boxtel (a1), Renate H. M. de Groot (a1) (a2) (a3), Jelle Jolles (a1) (a2), Frans J. Kok (a4), Petra Verhoef (a4) (a5) (a6) and Jane Durga (a4) (a5) (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed