Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T05:23:37.563Z Has data issue: false hasContentIssue false

Distribution and changes in urease (EC 3.5.1.5) activity in Rumen Simulation Technique (Rusitec)

Published online by Cambridge University Press:  24 July 2007

J. W. Czerkawski
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL, Scotland
Grace Breckenridge
Affiliation:
The Hannah Research Institute, Ayr KA6 5HL, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The Rumen Simulation Technique (Rusitec) was used in a series of long-term experiments to study the distribution and changes of urease (EC 3.5.1.5) activity in a heterogeneous fermentation system.

2. It was shown that in Rusitec the high urease activity from the inoculum decreased to low values, that the rate of decrease was consistent with simple dilution of ureolytic micro-organisms and that the urease activity could be restored to original values by infusion of urea into the reaction vessels. The magnitude of this urease activity was a direct function of the amounts of urea infused. Single daily additions of the same or greater amounts of urea in food or as solid failed to increase the urease activity significantly.

3. In general, urease activity increased 2–6 h after feeding and the increases were greater with roughage diets.

4. The ureolytic activity per unit volume was always higher in compartment 2 (space occupied by micro-organisms that are loosely associated with the solid) than in compartment 1 (strained rumen contents) or compartment 3 (space occupied by microbial population that cannot be washed out of the solid matrix).

5. The distribution of urease activity between the compartments was different from the distribution of certain other enzymes (e.g. protease and alkaline phosphatase (EC 3.1.3.1)).

6. Apart from the boundary region, the concentrations of urease, ammonia and volatile fatty acids in compartment 2 were constant, while the concentrations of protein, DNA and another enzyme (alkaline phosphatase) increased with the depth of the compartment. Specific urease activity (per unit weight of protein or DNA) was much higher in compartment 1 than in compartment 2 and it decreased markedly with depth of compartment.

7. The concentrations of ammonia were always much higher in the solid matrix (compartments 2 and 3) than in the free suspension of micro-organisms (compartment 1). There was a linear relation between these two quantities.

8. The results are discussed in relation to published work on the entry and metabolism of urea in the rumen.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1982

References

Allison, M. J. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 456 [Phillipson, A. T., editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Brent, B. E., Adepoju, A. & Portela, F. (1971). J. Anim. Sci. 32, 794.CrossRefGoogle Scholar
Brice, R. E. & Morrison, I. M. (1981). Proc. Nut. Soc. 40, 75A.Google Scholar
Burton, K. (1955). Biochem. J. 62, 315.CrossRefGoogle Scholar
Chalupa, W. (1968). J. Anim. Sci. 27, 207.CrossRefGoogle Scholar
Chalupa, W. (1972). Fedn Proc. Fedn Am. Socs exp. Biol. 31, 1152.Google Scholar
Chalupa, W., Clark, J., Opliger, P. & Lavker, R. (1970). J. Nutr. 100, 161.Google Scholar
Cheng, K.-J., Akin, D. E. & Costerton, J. W. (1977). Fedn Proc. Fedn Am. Socs exp. Biol. 36, 193.Google Scholar
Cheng, K.-J. & Costerton, J. W. (1977). Appl. Environ. Microbiol. 34, 586.Google Scholar
Cheng, K.-J. & Costerton, J. W. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 227 [Ruckebusch, Y. and Thivend, P., editor]. Lancaster: MTP Press Limited.Google Scholar
Cheng, K.-J., Hironaka, R. & Costerton, J. W. (1976). Can. J. Microbiol. 22, 764.Google Scholar
Cheng, K.-J. & Wallace, R. J. (1979). Br. J. Nutr. 42, 553.CrossRefGoogle Scholar
Cook, A. R. (1976). J. gen. Microbiol. 92, 32.CrossRefGoogle Scholar
Crawford, R. J., Hoover, W. H. & Junkins, L. L. (1980). J. Anim. Sci. 51, 986.CrossRefGoogle Scholar
Czerkawski, J. W. (1974). J. Sci. Fd Agric. 25, 45.CrossRefGoogle Scholar
Czerkawski, J. W. (1976). Br. J. Nutr. 36, 311.Google Scholar
Czerkawski, J. W. (1979). The Hannah Res. Inst. Report p. 69.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1977). Br. J. Nutr. 38, 371.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1979 a). Br. J. Nutr. 42, 217.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1979 b). Br. J. Nutr. 42, 229.Google Scholar
Czerkawski, J. W., Christie, W. W., Breckenridge, G. & Hunter, M. L. (1975). Br. J. Nutr. 34, 25.CrossRefGoogle Scholar
Czerkawski, J. W. & Clapperton, J. L. (1968). Lab. Pract. 17, 994.Google Scholar
Dinsdale, D., Cheng, K.-J., Wallace, R. J. & Goodlad, R. A. (1980). Appl. Environ. Microbiol. 39, 1059.CrossRefGoogle Scholar
Erfle, J. D., Sauer, F. D. & Mahadevan, S. (1977). J. Dairy Sci. 60, 1064.Google Scholar
Houpt, T. R. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 119 [Phillipson, A. R., editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
John, A., Isaacson, H. R. & Bryant, M. P. (1974). J. Dairy Sci. 57, 1003.CrossRefGoogle Scholar
Jones, G. A. (1967). In Urea as a Protein Supplement, p. 111 [Briggs, M. H., editor]. Oxford: Pergamon Press Ltd.Google Scholar
Kennedy, P. M. (1980). Br. J. Nutr. 43, 125.Google Scholar
Kennedy, P. M. & Milligan, L. P. (1980). Can. J. Anim. Sci. 60, 205.Google Scholar
Mahadevan, S., Sauer, F. & Erfle, J. D. (1976). J. Anim. Sci. 42, 745.Google Scholar
Marty, R. J. & Demeyer, D. I. (1973). Br. J. Nutr. 30, 369.CrossRefGoogle Scholar
Mehrez, A. Z., Ørskov, E. R. & McDonald, I. (1977). Br. J. Nutr. 38, 437.Google Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.Google Scholar
Obara, Y. & Shimbayashi, K. (1979). Br. J. Nutr. 42, 497.Google Scholar
Okorie, A. U., Buttery, P. J. & Lewis, D. (1977). Proc. Nut. Soc. 36, 39A.Google Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 148.CrossRefGoogle Scholar
Rahman, A. S. & Decker, P. (1966). Nature, Lond. 209, 618.Google Scholar
Roffler, R. E. & Satter, L. D. (1975). J. Dairy Sci. 58, 1880.CrossRefGoogle Scholar
Satter, L. D. & Slyter, L. L. (1974). Br. J. Nutr. 32, 199.Google Scholar
Senshu, T., Nakamura, K., Sawa, A., Miura, H. & Matsumoto, T. (1980). J. Dairy Sci. 63, 305.Google Scholar
Sigma Chemical Co. (1980 a). Technical Bulletin 104. St Louis, USA: Sigma Chemical Co.Google Scholar
Sigma Chemical Co. (1980 b). Technical Bulletin 535. St Louis, USA: Sigma Chemical Co.Google Scholar
Slyter, L. L., Oltjen, R. R., Kern, D. L. & Weaver, J. M. (1968). J. Nutr. 94, 185.CrossRefGoogle Scholar
Smith, F. (1965). Meth. Biochem. Analysis 3, 180.Google Scholar
Smith, M. S. & Bryant, M. P. (1979). Am. J. clin. Nutr. 32, 149.Google Scholar
Stanier, G. & Davies, A. (1981). Br. J. Nutr. 45, 567.Google Scholar
Stern, M. D. & Hoover, W. H. (1979). J. Anim. Sci. 49, 1590.CrossRefGoogle Scholar
Tillman, A. D. & Sidhu, K. S. (1968). J. Anim. Sci. 28, 689.CrossRefGoogle Scholar
Toennies, G. & Feng, F. (1965). Analyt. Biochem. 11, 411.CrossRefGoogle Scholar
Wallace, R. J. (1979). J. Appl. Bacteriol. 47, 443.CrossRefGoogle Scholar
Wallace, R. J., Czerkawski, J. W. & Breckenridge, G. (1981). Br. J. Nutr. 46, 131.CrossRefGoogle Scholar