Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:29:55.025Z Has data issue: false hasContentIssue false

Digestion of milk, fish and soya-bean protein in the preruminant calf: flow of digesta, apparent digestibility at the end of the ileum and amino acid composition of ileal digesta

Published online by Cambridge University Press:  09 March 2007

P. Guilloteau
Affiliation:
INRA, 65, rue de Saint-Brieuc, 35042 Rennes Cédex, France
R. Toullec
Affiliation:
INRA, 65, rue de Saint-Brieuc, 35042 Rennes Cédex, France
J. F. Grongnet
Affiliation:
INRA, 65, rue de Saint-Brieuc, 35042 Rennes Cédex, France
P. Patureau-Mirand
Affiliation:
INRA, Theix, 63122 Ceyrat, France
J. Prugnaud
Affiliation:
INRA, Theix, 63122 Ceyrat, France
D. Sauvant
Affiliation:
INA-PG, 16, rue Claude Bernard, 75005 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Digesta were collected from eleven preruminant calves fitted with re-entrant (four calves in Expt 1 and three in Expt 2) or single cannulas (four calves in Expt 1) in the terminal ileum. Collection periods lasted 24 h (Expt 1) or 96 h (Expt 2).

2. Two milk-substitutes (fish and soya bean) and a control diet were given to the calves. In the control diet, protein was entirely provided by skim-milk powder. In the other two diets, protein was provided mainly by a partially hydrolysed white-fish protein concentrate or a soya-bean protein concentrate prepared by extracting soya-bean meal with hot aqueous ethanol.

3. In Expt 1, flow rates of fresh matter, dry matter, nitrogen and ash exhibited two maxima between 6 and 8 h after the morning meal and between 4 and 6 h (control and soya-bean diets) or 6 and 8 h (fish diet) after the evening meal. Minimum pH values were observed at times of maximum flow rate. Variations observed in the flow rates and pH values were larger with fish and especially soya-bean diets than with the control diet.

4. The apparent digestibility of the three diets in the terminal ileum was significantly higher in Expt 2 than in Expt 1: for N, the values were 0.92, 0.83 and 0.75 (Expt l), and 0.94, 0.87 and 0.88 (Expt 2) with the control, fish and soya-bean diets respectively.

5. The amount of N apparently absorbed in the terminal ileum represented 90–96% of the amount that disappeared from the whole digestive tract in Expt 1 and 95–99% in Expt 2.

6. In Expt 1 the amino acid (AA) composition of digesta changed little with the flow rate when the calves were given the control diet (from 158 to 179 g glutamic acid/kg AA). With the fish and soya-bean diets the AA composition was similar to that observed with the control diet when the flow rate was minimum, but differences became apparent as the flow rate increased (281 and 161 g glutamic acid/kg AA for the soya-bean and control diets respectively with maximum flow rate). In Expt 2, the mean compositions of the digesta were very similar to the means obtained in Expt 1.

7. Different comparisons with dietary, endogenous and bacterial proteins indicated that for the three diets a common mixture containing approximately 65% endogenous and 35 % bacterial proteins reached the terminal ileum. The quantity of dietary protein added to this mixture appeared to be very low with the control diet, but it increased with the flow rate in the case of the fish and soya-bean diets.

8. In Expt 2, the additional undigested protein in the small intestine was richer in glycine with the fish diet and in glutamic acid and aspartic acid with the soya-bean diet compared with the control diet. This undigested fraction probably originated mainly from the fish solubles and the glycinin of soya bean respectively.

9. With the control diet the apparent digestibility of threonine and cystine was always lower than the mean value for all AA while that of methionine was higher (0.92, 0.82 and 0.96 respectively). Digestibility of all AA was higher for the control diet than corresponding values for the fish and soya-bean diets; these differences were greatest for histidine with the fish diet (–0.11) and for glutamic acid with the soya-bean diet (–0.13).

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Ash, R. W. (1962). Animal Production 4, 309312.Google Scholar
Assan, E. B. & Thivend, P. (1976). Proceedings of the Nutrition Society 35, 104A105A.Google Scholar
Barratt, M. E. J. & Porter, P. (1979). Journal of Immunology 2, 676680.Google Scholar
Besle, J. M., Lassalas, B. & Thivend, P. (1980). Reproduction, Nutrition, Développement 20, 14011414.CrossRefGoogle Scholar
Cockburn, J. E. & Williams, A. P. (1984). British Journal of Nutrition 51, 111132.CrossRefGoogle Scholar
Colvin, B. M., Lowe, R. A. & Ramsey, H. A. (1969). Journal of Dairy Science 52, 687688.Google Scholar
Combe, E. (1976). Comptes Rendus des Séances de la Société de Biologie 170, 787793.Google Scholar
Combe, E., Patureau-Mirand, P., Bayle, G. & Pion, R. (1980). Reproduction, Nutrition, Développement 20, 17071715.Google Scholar
Dagnélie, P. (1970). Théorie et Méthodes Statistiques, vol. 2, p. 153. Gembloux: Duculot.Google Scholar
Darcy, B., Laplace, J. P. & Duée, P. H. (1983). Annales de Zootechnie 32, 315340.Google Scholar
Ehouinsou, M. A. (1976). Etude de la digestion du lactose chez le mouton. These de Docteur-Ingénieur. University of Clermont-Ferrand.Google Scholar
Evans, R. A, Axford, R. F. E. & Offer, N. W. (1975). Proceedings of the Nutrition Society 34, 65A.Google Scholar
Garnot, P., Toullec, R., Thapon, J. L., Martin, P., Minh-Thu, H., Mathieu, C. M. & Ribadeau Dumas, B. (1977). Journal of Dairy Research 44, 923.CrossRefGoogle Scholar
Gaudreau, J. M. & Brisson, G. J. (1980). Journal of Dairy Science 63, 426440.Google Scholar
Gorrill, A. D. L., Thomas, J. W., Stewart, W. E. & Morrill, J. L. (1967). Journal of Nutrition 92, 8692.Google Scholar
Grongnet, J. F., Patureau-Mirand, P., Toullec, R. & Prugnaud, J. (1981). Annales de Zootechnie 30, 443464.Google Scholar
Guilloteau, P., Paruelle, J. L., Toullec, R. & Mathieu, C. M. (1975). Annales de Zootechnie 24, 243253.Google Scholar
Guilloteau, P., Patureau-Mirand, P., Toullec, R. & Prugnaud, J. (1980). Reproduction, Nutrition, Développement 20, 615629.Google Scholar
Guilloteau, P., Sauvant, D. & Patureau-Mirand, P. (1983). Annals of Nutrition and Metabolism 27, 457469.Google Scholar
Guilloteau, P. & Toullec, R. (1980). Reproduction, Nutrition, Développement 20, 601613.CrossRefGoogle Scholar
Guilloteau, P., Toullec, R.., Culioli, J. & Le Douaron, D. (1977). Annales de Zootechnie 26, 1528.Google Scholar
Guillotedu, P., Toullec, R., Patureau-Mirand, P. & Prugnaud, J. (1981). Reproduction, Nutrition, Développement 21, 885899.Google Scholar
Guilloteau, P., Toullec, R., Sauvant, D. & Paruelle, J. L. (1979). Annales de Zootechnie 28, 117.CrossRefGoogle Scholar
Hill, M. O. (1974). Applied Statistics 23, 340354.Google Scholar
Jenkins, K. J. & Emmons, D. B. (1982). Nutrition Reports International 26, 635643.Google Scholar
Jenness, R. (1974). In Lactation. A Comprehensive Treatise, vol. 3. Nutrition and Biochemistry of Milk Maintenance, p. 3 [Larson, B. L. and Smith, V. R.. editors]. New York: Academic Press.Google Scholar
Kickhoffen, B., Hammer, D. K. & Scheel, D: (1968). Hoppe-Seyler' Zeitschrift für Physiologische Chemie 349, 17551773.CrossRefGoogle Scholar
Kilshaw, P. J. & Sissons, J. W. (1979). Research in Veterinary Science 27, 366371.Google Scholar
Kouamé, K. G., Patureau-Mirand, P., Troccon, J. L., Prugnaud, J., Journet, M. & Pion, R. (1984). Annales de Zootechnie 33, 445466.Google Scholar
MacRae, J. C. (1974). Proceedings of the Nutrition Society 33, 147.Google Scholar
Mason, V. C. (1979). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 41, 131139.Google Scholar
Mason, V. C., Just, A. & Bech-Andersen, S. (1976). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 36, 310324.CrossRefGoogle Scholar
Miller, D. (1973). Feedstuffs 45, 29.Google Scholar
Moreira, M. A., Hermodson, M. A., Larkins, B. A. & Nielsen, N. C. (1979). Journal of Biological Chemistry 254, 99219926.Google Scholar
Mylrea, P. J. (1966 a). Research in Veterinary Science 7, 333341.CrossRefGoogle Scholar
Mylrea, P. J. (1966 b). Research in Veterinary Science 7, 394406.Google Scholar
Mzik, J., Hogan, J. P., Lindsay, J. R. & Davis, P. (1978). Journal of Chromatography 152, 269271.Google Scholar
Paruelle, J. L., Toullec, R., Patureau-Mirand, P. & Mathieu, C. M. (1974). Annales de Zootechnie 23, 519535.Google Scholar
Patureau-Mirand, P., Toullec, R., Guilloteau, P. & Pion, R. (1977). Annales de Biologie Animale Biochimie Biophysique 17, 7183.Google Scholar
Prugnaud, J. & Pion, R. (1976). Journée de Biochimie, p. 4. Paris: Beckman Instruments, France.Google Scholar
Roy, J. H. B., Stobo, I. J. F. & Gaston, H. J. (1970). British Journal of Nutrition 24, 441457.Google Scholar
Roy, J. H. B., Stobo, I. J. F., Shotton, S. M., Ganderton, P. & Gillies, C. M. (1977). British Journal of Nutrition 38, 167187.Google Scholar
Schultze, H. E. & Heremans, J. F. (1966). Molecular Biology of Human Proteins, with Special Reference to Plasma Proteins, vol. 1, p. 182. Amsterdam: Elsevier Publishing Company.Google Scholar
Seegraber, F. J. & Morrill, L. L. (1982). Journal of Dairy Science 65, 19621970.Google Scholar
Sissons, J. W. & Smith, R. H. (1976). British Journal of Nutrition 36, 421438.Google Scholar
Sissons, J. W., Smith, R. H. & Hewitt, D. (1979). British Journal of Nutrition 42, 477485.CrossRefGoogle Scholar
Sissons, J. W., Smith, R. H., Hewitt, D. & Nyrup, A. (1982). British Journal of Nutrition 47, 311318.Google Scholar
Smith, R. H. & Sissons, J. W. (1975). British Journal of Nutrition 33, 329349.Google Scholar
Snary, D. & Allen, A. (1971). Biochemical Journal 123, 845853.Google Scholar
Soares, J. H., Miller, D. & Ambrose, M. E. (1970). Feedstuffs 42, 65.Google Scholar
Ternouth, J. H., Roy, J. H. B., Thompson, S. Y., Toothill, J., Gillies, C. M. & Edwards-Webb, J. D. (1975). British Journal of Nutrition 33, 181196.Google Scholar
Thanh, V. H. & Shibasaki, K. (1977). Biochimica et Biophysica Acta 490, 370384.Google Scholar
Toullec, R., Coroller, J. Y. & Patureau-Mirand, P. (1977 a). Annales de Zootechnie 26, 523532.Google Scholar
Toullec, R., Guilloteau, P. & Coroller, J. Y. (1979 a). Annales de Biologie Animale Biochimie Biophysique 19, 729732.CrossRefGoogle Scholar
Toullec, R., Paruelle, J. L., Coroller, J. Y. & Le Treut, J. H. (1977 b). Annales de Zootechnie 26, 2943.Google Scholar
Toullec, R., Thivend, P. & Mathieu, C. M. (1971). Annales de Biologie Animale Biochimie Biophysique 11, 435453.Google Scholar
Toullec, R., Thivend, P. & Theriez, M. (1979 b). World Animal Review 33, 3242.Google Scholar
Van Hellemond, K. K. & Van Weerden, E. J. (1973). Proceedings of the Nutrition Society 32, 231235.CrossRefGoogle Scholar
Van Weerden, E. J., Huisman, J. & Van Hellemond, K. K. (1977). Landbouwkundig Tijdschrift 89, 217224.Google Scholar
Williams, V. J., Roy, J. H. B. & Gillies, C. M. (1976). British Journal of Nutririon 36, 317335.CrossRefGoogle Scholar
Wolf, W. J. (1972). In Soyabeans: Chemistry and Technology, pp. 93143 [Smith, A. K. and Circle, S. J., editors]. Westport: Avi Publishing Company.Google Scholar
Zebrowska, T., Buraczewska, L. & Buraczewski, S. (1978). Roczniki Nauk Rolniczych Seria B Zootechnia 99, 8797.Google Scholar