Skip to main content Accessibility help

Differences in plasma metabolomics between sows fed dl-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition

  • Xiaoling Zhang (a1), Hao Li (a1), Guangmang Liu (a1), Haifeng Wan (a1), Yves Mercier (a2), Caimei Wu (a1), Xiuqun Wu (a1), Lianqiang Che (a1), Yan Lin (a1), Shengyu Xu (a1), Gang Tian (a1), Daiwen Chen (a1), De Wu (a1) and Zhengfeng Fang (a1)...


The aim of the present study was to determine whether increased consumption of methionine as dl-methionine (DLM) or its hydroxy analogue dl-2-hydroxy-4-methylthiobutanoic acid (HMTBA) could benefit milk synthesis and neonatal growth. For this purpose, eighteen cross-bred (Landrace × Yorkshire) primiparous sows were fed a control (CON), DLM or HMTBA diet (n 6 per diet) from 0 to 14 d post-partum. At postnatal day 14, piglets in the HMTBA group had higher body weight (P= 0·02) than those in the CON group, tended (P= 0·07) to be higher than those in the DLM group, and had higher (P< 0·05) mRNA abundance of jejunal fatty acid-binding protein 2, intestinal than those in the CON and DLM groups. Compared with the CON diet-fed sows, milk protein, non-fat solid, and lysine, histidine and ornithine concentrations decreased in the DLM diet-fed sows (P< 0·05), and milk fat, lactose, and cysteine and taurine concentrations increased in the HMTBA diet-fed sows (P< 0·05). Plasma homocysteine and urea N concentrations that averaged across time were increased (P< 0·05) in sows fed the DLM diet compared with those fed the CON diet. Metabolomic results based on 1H NMR spectroscopy revealed that consumption of the HMTBA and DLM diets increased (P< 0·05) both sow plasma methionine and valine levels; however, consumption of the DLM diet led to lower (P< 0·05) plasma levels of lysine, tyrosine, glucose and acetate and higher (P< 0·05) plasma levels of citrate, lactate, formate, glycerol, myo-inositol and N-acetyl glycoprotein in sows. Collectively, neonatal growth and milk synthesis were regulated by dietary methionine levels and sources, which resulted in marked alterations in amino acid, lipid and glycogen metabolism.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Differences in plasma metabolomics between sows fed dl-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Differences in plasma metabolomics between sows fed dl-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Differences in plasma metabolomics between sows fed dl-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition
      Available formats


Corresponding author

* Corresponding author: Professor Z. Fang, fax +86 28 86290920, email


Hide All
1 Fang, Z, Yao, K, Zhang, X, et al. (2010) Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino acids 39, 633640.
2 Shoveller, AK, Stoll, B, Ball, RO, et al. (2005) Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr 135, 16091612.
3 Bauchart-Thevret, C, Stoll, B, Chang, X, et al. (2008) Sulfur amino acids are necessary for normal intestinal mucosal growth in neonatal piglets. FASEB J 22, 896.1.
4 Bauchart-Thevret, C, Stoll, B, Chacko, S, et al. (2009) Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. Am J Physiol Endocrinol Metab 296, E1239E1250.
5 Daza, A, Riopérez, J & Centeno, C (2004) Short Communication. Changes in the composition of sows' milk between days 5 to 26 of lactation. Span J Agric Res 2, 333336.
6 Stoll, B, Henry, J, Reeds, PJ, et al. (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128, 606614.
7 Dai, ZL, Li, XL, Xi, PB, et al. (2012) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42, 15971608.
8 Schei, I, Danfær, A, Boman, I, et al. (2007) Post-ruminal or intravenous infusions of carbohydrates or amino acids to dairy cows 1. Early lactation. Animal 1, 501514.
9 Soltwedel, KT, Easter, RA & Pettigrew, JW (2006) Evaluation of the order of limitation of lysine, threonine, and valine, as determined by plasma urea nitrogen, in corn–soybean meal diets of lactating sows with high body weight loss. J Anim Sci 84, 17341741.
10 Guan, X, Bequette, BJ, Ku, PK, et al. (2004) The amino acid need for milk synthesis is defined by the maximal uptake of plasma amino acids by porcine mammary glands. J Nutr 134, 21822190.
11 Bojčuková, J & Krátký, F (2006) Influence of various lysine and threonine levels in feed mixtures for lactating sows on milk quality and piglet growth. Czech J Anim Sci 51, 2430.
12 Appuhamy, J, Knapp, J, Becvar, O, et al. (2011) Effects of jugular-infused lysine, methionine, and branched-chain amino acids on milk protein synthesis in high-producing dairy cows. J Dairy Sci 94, 19521960.
13 Appuhamy, JA, Knoebel, NA, Nayananjalie, WA, et al. (2012) Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. J Nutr 142, 484491.
14 Benevenga, N & Steele, R (1984) Adverse effects of excessive consumption of amino acids. Annu Rev Nutr 4, 157181.
15 Xie, M, Hou, S, Huang, W, et al. (2007) Effect of excess methionine and methionine hydroxy analogue on growth performance and plasma homocysteine of growing Pekin ducks. Poult Sci 86, 19951999.
16 Fang, Z, Luo, J, Qi, Z, et al. (2009) Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets. Amino acids 36, 501509.
17 Fang, Z, Luo, H, Wei, H, et al. (2010) Methionine metabolism in piglets fed dl-methionine or its hydroxy analogue was affected by distribution of enzymes oxidizing these sources to keto-methionine. J Agric Food Chem 58, 20082014.
18 Fang, Z, Huang, F, Luo, J, et al. (2010) Effects of dl-2-hydroxy-4-methylthiobutyrate on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Br J Nutr 103, 643651.
19 Swindle, MM, Makin, A, Herron, AJ, et al. (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49, 344356.
20 National Research Council (1998) Requirements of Swine, 10th ed. Washington, DC: National Academic Press.
21 Dourmad, J-Y, Étienne, M, Valancogne, A, et al. (2008) InraPorc: a model and decision support tool for the nutrition of sows. Anim Feed Sci Technol 143, 372386.
22 Wang, YB, Liu, DH, Zhou, XH, et al. (2003) Effect of applying ultrasonic milk analyzer for detecting composition of cow milk adulterated with table salt and sugar. J Zhejiang University (Agric Life Sci) 29, 671674.
23 Roberts, RF & Roberts, WL (2004) Performance characteristics of a recombinant enzymatic cycling assay for quantification of total homocysteine in serum or plasma. Clin Chim Acta 344, 9599.
24 Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $$2^{ - \Delta \Delta C _{t}} $$ method. Methods 25, 402408.
25 Trygg, J & Wold, S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16, 119128.
26 Cloarec, O, Dumas, ME, Trygg, J, et al. (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77, 517526.
27 Lindgren, F, Hansen, B, Karcher, W, et al. (1996) Model validation by permutation tests: applications to variable selection. J Chemom 10, 521532.
28 Kruse, S, Traulsen, I & Krieter, J (2011) Analysis of water, feed intake and performance of lactating sows. Livest Sci 135, 177183.
29 Eissen, J, Kanis, E & Kemp, B (2000) Sow factors affecting voluntary feed intake during lactation. Livest Prod Sci 64, 147165.
30 Kim, S, Hurley, W, Wu, G, et al. (2009) Ideal amino acid balance for sows during gestation and lactation. J Anim Sci 87, E123E132.
31 Kim, S & Easter, R (2001) Nutrient mobilization from body tissues as influenced by litter size in lactating sows. J Anim Sci 79, 21792186.
32 Kusina, J, Pettigrew, J, Sower, A, et al. (1999) Effect of protein intake during gestation and lactation on the lactational performance of primiparous sows. J Anim Sci 77, 931941.
33 Bröer, S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88, 249286.
34 Hagihira, H, Lin, E, Samiy, A, et al. (1961) Active transport of lysine, ornithine, arginine and cystine by the intestine. Biochem Biophys Res Commun 4, 478481.
35 Soriano-García, JF, Torras-Llort, M, Moretó, M, et al. (1999) Regulation of l-methionine and l-lysine uptake in chicken jejunal brush-border membrane by dietary methionine. Am J Physiol Regul Integr Comp Physiol 277, R1654R1661.
36 Dibner, J & Buttin, P (2002) Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res 11, 453463.
37 Richards, J, Atwell, C, Vazquez-Anon, M, et al. (2005) Comparative in vitro and in vivo absorption of 2-hydroxy-4 (methylthio) butanoic acid and methionine in the broiler chicken. Poult Sci 84, 13971405.
38 Martín-Venegas, R, Rodríguez-Lagunas, M, Geraert, P, et al. (2007) Monocarboxylate transporter 1 mediates dl-2-hydroxy-(4-methylthio) butanoic acid transport across the apical membrane of Caco-2 cell monolayers. J Nutr 137, 4954.
39 Jendza, J, Geraert, P, Ragland, D, et al. (2011) The site of intestinal disappearance of dl-methionine and methionine hydroxy analog differs in pigs. J Anim Sci 89, 13851391.
40 Walter, A & Gutknecht, J (1984) Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol 77, 255264.
41 Guan, X, Bequette, BJ, Calder, G, et al. (2002) Amino acid availability affects amino acid flux and protein metabolism in the porcine mammary gland. J Nutr 132, 12241234.
42 Guan, X, Pettigrew, J, Ku, P, et al. (2004) Dietary protein concentration affects plasma arteriovenous difference of amino acids across the porcine mammary gland. J Anim Sci 82, 29532963.
43 Janeczko, MJ, Stoll, B, Chang, X, et al. (2007) Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs. J Nutr 137, 23842390.
44 Pettigrew, J, Gill, M, France, J, et al. (1992) A mathematical integration of energy and amino acid metabolism of lactating sows. J Anim Sci 70, 37423761.
45 Kvietys, P & Granger, D (1981) Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80, 962969.
46 Guan, X, Stoll, B, Lu, X, et al. (2003) GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets. Gastroenterology 125, 136147.
47 Shahbazkia, HR, Aminlari, M, Tavasoli, A, et al. (2010) Associations among milk production traits and glycosylated haemoglobin in dairy cattle; importance of lactose synthesis potential. Vet Res Commun 34, 19.
48 Luick, JR & Kleiber, M (1961) Quantitative importance of plasma glucose for synthesis of milk fat glycerol. Am J Physiol 200, 13271329.
49 Wu, G & Knabe, DA (1994) Free and protein-bound amino acids in sow's colostrum and milk. J Nutr 124, 415424.
50 Wang, J, Chen, L, Li, P, et al. (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138, 10251032.
51 Lu, S, Yao, Y, Meng, S, et al. (2002) Overexpression of apolipoprotein A-IV enhances lipid transport in newborn swine intestinal epithelial cells. J Biol Chem 277, 3192931937.
52 Shi, B, Ni, Z, Zhou, W, et al. (2010) Circulating levels of asymmetric dimethylarginine are an independent risk factor for left ventricular hypertrophy and predict cardiovascular events in pre-dialysis patients with chronic kidney disease. Eur J Intern Med 21, 444448.
53 Abedini, S, Meinitzer, A, Holme, I, et al. (2009) Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortality in renal transplant recipients. Kidney Int 77, 4450.
54 Young, JM, Terrin, N, Wang, X, et al. (2009) Asymmetric dimethylarginine and mortality in stages 3 to 4 chronic kidney disease. Clin J Am Soc Nephrol 4, 11151120.
55 Atamer, A, Ecder, SA, Atamer, Y, et al. (2012) The effects of asymmetric dimethylarginine (ADMA), nitric oxide (NO) and homocysteine (Hcy) on progression of mild chronic kidney disease (CKD): relationship between clinical and biochemical parameters In Chronic Kidney Disease, pp. 197–208 [M Gööz, editor]. Rijeka, Croatia: InTech.
56 Stühlinger, MC, Tsao, PS, Her, J-H, et al. (2001) Homocysteine impairs the nitric oxide synthase pathway role of asymmetric dimethylarginine. Circulation 104, 25692575.
57 Stipanuk, MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24, 539577.
58 Hogeveen, M, Blom, HJ, van Amerongen, M, et al. (2002) Hyperhomocysteinemia as risk factor for ischemic and hemorrhagic stroke in newborn infants. J Pediatr 141, 429431.
59 van Beynum, IM, Smeitink, JAM, den Heijer, M, et al. (1999) Hyperhomocysteinemia: a risk factor for ischemic stroke in children. Circulation 99, 20702072.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed