Skip to main content Accessibility help
×
Home

Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep

  • Patricia López-Andrés (a1), Giuseppe Luciano (a2), Valentina Vasta (a2), Trevor M. Gibson (a3), Luisa Biondi (a2), Alessandro Priolo (a2) and Irene Mueller-Harvey (a4)...

Abstract

A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography–MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: P. López-Andrés, fax +39 95 234 481, email patricialopezandres@unict.it

References

Hide All
1Yoshida, T, Hatano, T & Ito, H (2000) Chemistry and function of vegetable polyphenols with high molecular weights. BioFactors 13, 121125.
2Mueller-Harvey, I (2001) Analysis of hydrolysable tannins. Anim Feed Sci Technol 91, 320.
3Hartzfeld, PW, Forkner, R, Hunter, MD, et al. (2002) Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J Agric Food Chem 50, 17851790.
4Porter, LJ (1992) Structure and chemical properties of the condensed tannins. In Plant Polyphenols, Synthesis, Properties and Significance, pp. 245258 [Hemingway, RW and Laks, PE, editors]. New York: Plenum.
5McDonald, M, Mila, I & Scalbert, A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44, 599606.
6Santos-Buelga, C & Scalbert, A (2000) Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80, 10941117.
7Hagerman, AE, Riedl, KM, Jones, GA, et al. (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46, 18871892.
8Luciano, G, Vasta, V, Monahan, FJ, et al. (2011) Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem 124, 10361042.
9Luciano, G, Monahan, FJ, Vasta, V, et al. (2009) Dietary tannins improve lamb meat color stability. Meat Sci 81, 120125.
10McSweeny, CS, Palmer, B, McNeill, DM, et al. (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91, 8393.
11Brooker, JD, O'Donovan, LA, Skene, I, et al. (1994) Streptococcus caprinus sp.nov. a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18, 313318.
12Nelson, KE, Pell, AN, Schofield, P, et al. (1995) Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins. Appl Environ Microb 61, 32933298.
13Skene, IK & Brooker, JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1, 321327.
14Sly, LI, Cahill, MM, Osawa, R, et al. (1997) The tannin-degrading species Streptococcus gallolyticus and Streptococcus caprinus are subjective synonymus. Int J Syst Bacteriol 47, 893894.
15Goel, G, Puniya, AK, Aguilar, CN, et al. (2005) Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92, 497503.
16Makkar, HPS, Becker, K, Abel, H, et al. (1995) Degradation of condensed tannins by rumen microbes exposed to quebracho tannins (QT) in rumen simulation technique (RUSITEC) and effects of QT on fermentative processes in the RUSITEC. J Sci Food Agric 69, 495500.
17Getachew, G, Pittroff, W, Putnam, DH, et al. (2008) The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Anim Feed Sci Technol 140, 444461.
18Bhat, TK, Makkar, HPS & Singh, B (1996) Isolation of a tannin-protein complex-degrading fungus from faeces of hill cattle. Lett Appl Microbiol 22, 257258.
19Perez-Maldonado, RA & Norton, BW (1996) Digestion of 14C-labelled condensed tannins from Desmodium intortum in sheep and goats. Br J Nutr 76, 501513.
20Pérez-Magariño, S, Ortega-Heras, M & Cano-Mozo, E (2008) Optimization of a solid-phase extraction method using copolymer sorbents for isolation of phenolic compounds in red wines and quantification by HPLC. J Agric Food Chem 56, 1156011570.
21Juan, ME, Maijó, M & Planas, JM (2010) Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. J Pharmaceut Biomed 51, 391398.
22Wright, B, Gibson, T, Spencer, J, et al. (2010) Platelet-mediated metabolism of the common dietary flavonoid, quercetin. PLoS One 5, e9673.
23Georgé, S, Brat, P, Alter, P, et al. (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J Agric Food Chem 53, 13701373.
24Hervás, G, Pérez, V, Giráldez, FJ, et al. (2003) Intoxication of sheep with quebracho tannin extract. J Comp Path 129, 4454.
25Athanasiadou, S, Kyriazakis, I, Jackson, F, et al. (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet Parasitol 99, 205219.
26Waghorn, GC, Shelton, ID, McNabb, WC, et al. (1994) Effects of condensed tannins in Lotus pedunculatus on its nutritive value for sheep. 2. Nitrogenous aspects. J Agric Sci 123, 109119.
27Vasta, V, Mele, M, Scerra, M, et al. (2009) Metabolic fate of fatty acids involved in ruminal biohydrogentaion in sheep fed concentrate or herbage with or without tannins. J Anim Sci 87, 26742684.
28Vasta, V, Priolo, A, Scerra, M, et al. (2009) Δ9 desaturase protein expression and fatty acid composition of longissimus dorsi muscle in lambs fed green herbage or concentrate with or without added tannins. Meat Sci 82, 357364.
29Kerem, Z, Chertrit, D, Shoseyov, O, et al. (2006) Protection of lipids from oxidation by epicatechin, trans-resveratrol, and gallic and caffeic acids in intestinal model systems. J Agric Food Chem 54, 1028810293.
30Riedl, KM & Hagerman, E (2001) Tannin–protein complexes as radical scavengers and radical skins. J Agric Food Chem 49, 49174923.
31Arts, MJTJ, Haenen, GRMM, Wilms, LC, et al. (2002) Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 50, 11841187.
32Roux, DG (1992) Reflections on the chemistry and affinities of the major commercial condensed tannins in the context of their industrial use. In Plant Polyphenols: Synthesis, Properties, Significance, pp. 739 [Hemingway, RW and Laks, IPE, editors]. New York: Plenum.
33Mueller-Harvey, I (2006) Review: unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86, 20102037.
34Mueller-Harvey, I (1999) Tannins: their nature and biological significance. In Secondary Plant Products: Antinutritional and Beneficial Actions in Animal Feeding, pp. 1739 [Caygill, JC and Mueller-Harvey, I, editors]. Nottingham: Nottingham University Press.
35Gladine, C, Rock, E, Morand, C, et al. (2007) Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br J Nutr 98, 691701.
36Moñino, I, Martínez, C, Sotomayor, JA, et al. (2008) Polyphenolic transmission to Segureño lamb meat from ewes’ diet supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. J Agric Food Chem 56, 33633367.
37Porter, LJ, Hrstich, LN & Chan, B (1986) The conversion of procyanidins and rodelphinidins to cyanidin and delphinidin. Phytochemistry 25, 223230.
38Bhat, TK, Singh, B & Sharma, OP (1998) Microbial degradation of tannins – a current perspective. Biodegradation 9, 343357.
39Vasta, V & Luciano, G (2011) The effects of dietary consumption of plant secondary compounds on small ruminants’ products quality. Small Rum Res 101, 150159.
40Halliwell, B, Rafter, J & Jenner, A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81, 268276.
41Kresty, LA, Howell, AB & Maureen, B (2011) Cranberry proanthocyanidins mediate growth arrest of lung cancer cells through modulation of gene expression and rapid induction of apoptosis. Molecules 16, 23752390.
42Sgorlon, S, Stradaioli, G, Zanin, D, et al. (2006) Biochemical and molecular responses to antioxidant supplementation in sheep. Small Rum Res 74, 1733.
43Larrosa, M, García-Conesa, MT, Espín, JC, et al. (2010) Review: ellagitannins, ellagic acid and vascular health. Mol Aspects Med 31, 513539.

Keywords

Type Description Title
WORD
Supplementary materials

López-Andrés Supplementary Material
Figures 1-6

 Word (951 KB)
951 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed