Skip to main content Accessibility help
×
Home

Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax)

  • M. J. Alvarez (a1), C. J. Lopez-Bote (a2), A. Diez (a1), G. Corraze (a3), J. Arzel (a4), J. Dias (a3), S. J. Kaushik (a3) and J. M. Bautista (a1)...

Abstract

The effects of dietary fish oil and digestible protein (DP) levels on muscle fatty acid composition and susceptibility to lipid peroxidation were studied in two representative fish species for human nutrition, from fresh and seawater, rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax). In rainbow trout, higher concentrations of dietary fat and DP led to higher weight gain (g/d) (P = 0.001 and P = 0.043 respectively). Additionally, an interaction effect was observed in this species, since the effect of DP was only evident when the dietary fat concentration was low (P = 0.043). A similar tendency was also observed in European sea bass, although with less marked differences among nutritional treatments. Trout fed on diets with a higher concentration of dietary fat had higher concentrations of intramuscular total and neutral lipids in the dorsal muscle (P = 0.005). Increased levels of dietary DP led to significantly lower concentrations of polar lipids in the dorsal muscle of both rainbow trout (P = 0.005) and European sea bass (P = 0.006). In the neutral fraction of intramuscular lipids of dorsal muscle the concentration of n-3 fatty acids was positively affected by the dietary fat concentration in both rainbow trout (P = 0.04) and sea bass (P = 0.001). Muscle homogenates from trout and sea bass fed on diets rich in fish oil showed a significantly higher susceptibility to oxidation than muscle homogenates from fish fed on low-fat diets (P = 0.001). The higher DP concentration also increased susceptibility to oxidation. Moreover, in rainbow trout an interaction effect was observed where the pro-oxidant effect was of higher magnitude when the dietary concentration of both nutrients, fat and protein, was high (P = 0.004).

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax)
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr José M. Bautista, fax +34 1 394 3824, email bauchem@eucmax.sim.ucm.es

References

Hide All
Ando, S, Hatano, M & Zama, K (1985) Deterioration of chum salmon (Oncorhynchus keta) muscle during spawning migration. I. Changes in proximate composition of chum salmon muscle during spawning migration. Comparative Biochemistry and Physiology 80B, 303307.
Austreng, E & Krogdahl, A (1987) Food quality of cultured salmonids can be influenced. Feedstuffs 59, 1214.
Barroso, JB, Garcia-Salguero, L, Peragon, J, Higuera, M & Lupiañez, JA (1994) The influence of dietary protein on the kinetics of NADPH production systems in various tissues of rainbow trout (Oncorhynchus mykiss). Aquaculture 124, 4759.
Bautisa, JM, Garrido-Pertierra, A & Soler, G (1988) Glucose-6-phosphate dehydrogenase from Dicentrarchus labrax liver: kinetic mechanism and kinetic of NADPH inhibition. Biochimica et Biophysica Acta 967, 354363.
Bautista, JM & Luzzatto, L (1997) Glucose-6-phosphate dehydrogenase. In Protein Dysfunction in Human Genetic Disease, pp. 3356 [Swallow, DM and Edwards, YH, editors]. Oxford: BIOS Scientific Publishers.
Bosund, I & Ganrot, E (1969) Lipid hydrolysis in frozen baltic herring. Journal of Food Science 34, 1318.
Bradford, M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle-dye binding. Analytical Biochemistry 72, 248254.
Castledine, AJ & Buckley, JT (1980) Distribution and mobility of ω3 fatty acids in rainbow trout fed varying levels and types of dietary lipid. Journal of Nutrition 110, 675685.
Cho, CY & Kaushik, SJ (1990) Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World Review of Nutrition and Dietetics 61, 132172.
De Schrijver, R, Vermeulen, D & Daems, V (1992) Dose-response relationships between dietary (n-3) fatty acids and plasma tissue lipids, steroids excretion and urinary malonaldehyde in rats. Journal of Nutrition 122, 19791987.
Eichenberger, K, Bohni, P, Winterhalter, KH, Kawato, S & Richter, C (1982) Microsomal lipid peroxidation causes an increase in the order of membrane lipid domain. FEBS Letters 142, 5962.
Enser, M (1984) The chemistry, biochemistry and nutritional importance of animal fats. In Fats in Animal Nutrition, pp. 2354 [Wiseman, J, editor]. London: Butterworths.
Farkas, T & Csengeri, I (1976) Biosynthesis of fatty acids by the carp, Cyprinus carpio, in relation to environmental temperature. Lipids 11, 401407.
Frigg, M, Prabuck, AL & Ruhdel, EU (1990) Effect of dietary vitamin E levels on oxidative stability of trout fillets. Aquaculture 84, 145158.
Gomes, EF, Coraze, G & Kaushik, S (1993) Effects of dietary incorporation of a coextruded plant protein (rapeseed and peas) on growth, nutrient utilization and muscle fatty-acid composition of rainbow-trout. Aquaculture 113, 339353.
Hammer, CT & Wills, ED (1978) The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipid peroxidation. Biochemical Journal 174, 585593.
Han, TJ & Liston, J (1988) Correlation between lipid-peroxidation and phospholipid hydrolysis in frozen fish muscle. Journal of Food Science 53, 1917.
Hillestad, M & Johnsen, F (1994) High-energy low-protein diets for atlantic salmon–effects on growth, nutrient retention and slaughter quality. Aquaculture 124, 109116.
Hilton, JW & Atkinson, JI (1982) Response of rainbow trout, Salmo gairdneri, to increasing levels of available carbohydrate in practical trout diet. British Journal of Nutrition 47, 597607.
Hu, ML, Frankel, EN, Leibovitz, BE & Tappel, AL (1989) Effect of dietary lipid and vitamin E on in vitro lipid peroxidation in rat liver and kidney homogenates. Journal of Nutrition 119, 15741582.
Huang, YW, Eitenmiller, RR, Lillard, DA & Koehler, PE (1991) Storage quality of iced channel catfish fed different protein levels. Journal of Food Quality 14, 345354.
Huang, YW, Lillard, DA, Koehler, PE & Eitenmiller, RR (1992) Chemical changes and sensory evaluation of channel catfish as affected by diet, packaging method and frozen storage. Journal of Food Quality 15, 129138.
Ingemansson, T, Kaufmann, P & Ekstrand, B (1995) Multivariate evaluation of lipid hydrolysis and oxidation data from light and dark muscle of frozen stored rainbow trout (Oncorhynchus mykiss). Journal of Agricultural and Food Chemistry 43, 20462052.
Kaushik, SJ & Medale, F (1994) Energy-requirements, utilization and dietary supply to salmonids. Aquaculture 124, 8197.
Kellem, RO & Sinnhuber, RO (1982) Performance of rainbow-trout fed gelatin-bound diets of fish-protein concentrate of casein containing 25 to 45 percent herring oil. Progressive Fish-culturist 44, 131134.
Kim, JD, Kaushik, SJ & Pascaud, M (1989) Effects of dietary-lipid to protein ratios on the fatty-acid composition of muscle lipids in rainbow-trout. Nutrition Reports International 40, 916.
Kornbrust, DJ & Mavis, RD (1980) Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. Lipids 15, 315322.
L'Abbé, MR, Trick, KD & Beare-Rogers, JL (1991) Dietary (n-3) fatty acids affect rat heart, liver and aorta protective enzyme activities and lipid peroxidation. Journal of Nutrition 121, 13311340.
Labuza, TP (1971) Kinetics of lipid oxidation in foods. CRC Critical Review of Food Technology 2, 355405.
Lee, DJ, Roem, JN, Yu, TC & Sinnhuber, RO (1967) Effect of ω3 fatty acids on the growth of rainbow trout, Salmo gairdneri. Journal of Nutrition 92, 9398.
Legrow, SM & Beamish, FWH (1986) Influence of dietary-protein and lipid on apparent heat increment of rainbow-trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences 43, 1925.
Lopez-Bote, CJ, Rey, AJ, Sanz, M, Gray, IJ & Buckley, JD (1997) Dietary vegetable oils and alpha-tocopherol reduce lipid oxidation in rabbit muscle. Journal of Nutrition 127, 11761182.
Marmer, WN & Maxwell, RJ (1981) Dry column method for the quantitative extraction and simultaneous class separation of lipids from muscle tissue. Lipids 16, 365371.
National Research Council (1993) Nutrient Requirement of Fish. Washington, DC: National Academy of Sciences.
Ochoa, S (1955) Malic enzyme. In Methods in Enzymology, Vol. 1, pp. 739753 [Colowicks, SP and Kaplan, NO, editors]. New York, NY: Academic Press Inc.
Robert, N, Le Govvello, R, Mauviot, JC, Arroyo, F, Aquirre, P & Kasuhik, SJ (1993) Use of extruded diets in intensive trout culture: effect of protein to energy ratios on growth, nutrient utilization and on flesh and water quality. In Fish Nutrition in Practice. Les Colloques IRNA, Vol. 61, pp. 497500 [Kaushik, SJ and Luquet, P, editors]. Versailles Cedex: INRA.
Sargent, J, Henderson, RJ & Tocher, DR (1989) The lipids. In Fish Nutrition, pp. 153218 [Halver, JE, editor]. New York, NY: Academic Press Inc.
Statistical Analysis Systems (1988) SAS User's Guide: Statistics, version 6.04. Cary, NC: SAS Institute Inc.
Shewfelt, RL (1981) Fish muscle lipolysis – a review. Journal of Food Biochemistry 5, 79100.
Smith, RR, Rumsey, GL & Scott, ML (1978) Heat increment associated with dietary protein, fat and carbohydrate and complete diets in salmonids: comparative energetic efficiency. Journal of Nutrition 108, 10251032.
Takama, K, Love, RM & Smith, GL (1985) Selectivity in mobilisation of stored fatty acids by maturing cod, Gadus morhua L. Comparative Biochemistry and Physiology 80B, 713718.
Tichivangana, JZ & Morrissey, PA (1985) Metmyoglobin and inorganic metals as pro-oxidants in raw and cooked muscle systems. Meat Science 15, 107116.
Yu, TC & Sinnhuber, RO (1979) Effect of dietary ω3 and ω6 fatty acids on growth and fed conversion efficiency of coho salmon (Oncorhynchus kisutch). Aquaculture 16, 3138.

Keywords

Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax)

  • M. J. Alvarez (a1), C. J. Lopez-Bote (a2), A. Diez (a1), G. Corraze (a3), J. Arzel (a4), J. Dias (a3), S. J. Kaushik (a3) and J. M. Bautista (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed