Skip to main content Accessibility help
×
Home

Dietary conjugated linoleic acid differentially alters fatty acid composition and increases conjugated linoleic acid content in porcine adipose tissue

  • Ewa Ostrowska (a1), Reg F. Cross (a2), Morley Muralitharan (a3), Dale E. Bauman (a4) and Frank R. Dunshea (a1) (a3)...

Abstract

Conjugated linoleic acids (CLA) have been shown to decrease body fat content in pigs. It is possible that feeding pigs diets rich in CLA may increase carcass lipid CLA to levels that could provide health benefits when included as a part of a healthy diet. Therefore, the aim of the present study was to determine whether dietary CLA supplementation has any effect on the fatty acid composition of subcutaneous and intramuscular adipose tissue in pigs. Thirty-five female cross bred (Large White×Landrace) pigs (initial weight 57·2kg and initial P2 back fat 11·5mm) were used in the present study. Pigs were housed individually and randomly allocated to one of six dietary treatments (0·00, 1·25, 2·50, 5·00, 7·50 and 10·00g CLA55 (55g CLA isomers/100g total fatty acids; Natural Lipids Ltd, Hovdebygda, Norway)/kg) and fed their respective diets for 8 weeks. Twelve CLA isomers in the diet and in pig tissue lipids were separated by Ag+-HPLC. CLA was incorporated at fivefold higher levels in subcutaneous fat as compared with intramuscular fat and in a dose-dependant manner. Overall, the transfer efficiency of CLA was maximized at 5·00g CLA55/kg. However, there was clear selectivity in the uptake or incorporation of cis,trans-9,11 isomer over the trans,cis-10,12 isomer. In general, CLA supplementation produced significant changes in skeletal muscle and adipose tissue fatty acid composition, indicating that dietary CLA had a potent affect on lipid transport and metabolism in vivo. Significant increases in myristic, palmitic and palmitoleic acids and a reduction in arachidonic acid were observed, suggesting an alteration in activity of Δ5-, Δ6- and Δ9-desaturases in pig adipose tissue. In conclusion, feeding pigs diets supplemented with CLA increases carcass lipid CLA, but also results in changes in the fatty acid profile in pig fat that could potentially outweigh the benefits of CLA.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary conjugated linoleic acid differentially alters fatty acid composition and increases conjugated linoleic acid content in porcine adipose tissue
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary conjugated linoleic acid differentially alters fatty acid composition and increases conjugated linoleic acid content in porcine adipose tissue
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary conjugated linoleic acid differentially alters fatty acid composition and increases conjugated linoleic acid content in porcine adipose tissue
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Associate Professor Frank R. Dunshea, fax +61 3 9 742 0400, email Frank.Dunshea@dpi.vic.gov.au

References

Hide All
Anonymous (1997) Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, National Health and Medical Research, 6th ed. Melbourne, Victoria: CSIRO Publications.
Anonymous (2000). AgStats. Principal Agricultural Commodities Preliminary 1998–99 (7111·0). ACT, Australia: Australian Bureau of Statistics.
Aro, A, Mannisto, S, Salminen, I, Ovaskainen, ML, Kataja, V & Uusitupa, M (2000) Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutr Cancer 38, 151157.
Association of Official Analytical Chemists (1995) Official Methods of Analysis of AOAC International: Method 969.33. Arlington, VA: AOAC.
Banni, S, Carta, G, Contini, MS et al. (1996) Characterisation of conjugated diene fatty acids in milk, dairy products, and lamb tissues. Nutr Biochem 7, 150155.
Baumgard, LH, Matitashvili, E, Corl, BA, Dwyer, DA & Bauman, DE (2002) trans-10, cis-12 CLA decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J Dairy Sci 85, 21552163.
Baumgard, LH, Sangster, JK & Bauman, DE (2001) Milk fat synthesis is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). J Nutr 131, 17641769.
Bee, G (2000) Dietary conjugated linoleic acid consumption during pregnancy and lactation influences growth and tissue composition in weaned pigs. J Nutr 130, 29812989.
Bee, G, Messikommer, R & Gebert, S (1999) Dietary fats and energy levels differently affect tissue lipogenic enzyme activity in finishing pigs. Fett/Lipid 101, 336342.
Belury, MA & Kempa-Steczko, A (1997) Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids 32, 199204.
Chin, SF, Storkson, JM, Albright, KJ, Cook, ME & Pariza, MW (1994) Conjugated linoleic acid is a growth factor for rats as shown by enhanced weight gain and improved feed efficiency. J Nutr 124, 23442349.
Chouinard, PY, Corneau, L, Barbano, DM, Metzger, LE & Bauman, DE (1999 a) Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat synthesis in dairy cows. J Nutr 129, 15791584.
Chouinard, PY, Corneau, L, Saebo, A & Bauman, DE (1999 b) Milk yield and composition during abomasal infusion of conjugated linoleic acids in dairy cows. J Dairy Sci 82, 27372745.
Cross, RF, Ostrowska, E, Muralitharan, M & Dunshea, FR (2000) Mixed mode retention and the use of competing acid for the Ag +-HPLC analysis of underivatized conjugated linoleic acids. J High Resolut Chromatogr 23, 317323.
de Deckere, EA, Van Amelsvoort, JM, McNeill, GP & Jones, P (1999) Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Brit J Nutr 82, 309317.
Dunshea, FR, King, RH, Campbell, RG, Sainz, RD & Kim, YS (1993) Interrelationships between sex and ractopamine on protein and lipid deposition in rapidly growing pigs. J Anim Sci 71, 29192930.
Durgam, VR & Fernandes, G (1997) The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett 116, 121130.
Eggert, JM, Belury, MA, Kempa-Steczko, A, Mills, SE & Schinckel, AP (2001) Effects of conjugated linoleic acid on the belly firmness and fatty acid composition of genetically lean pigs. J Anim Sci 79, 28662872.
Folch, J, Lees, M & Sloane, Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
Fontanillas, R, Barroeta, A, Baucells, MD & Codony, R (1997) Effect of feeding highly cis-monounsaturated, trans, or n-3 fats on lipid composition of muscle and adipose tissue of pigs. J Agric Food Chem 45, 30703075.
Gläser, KR, Wenk, C & Scheeder, MRL (2002) Effects of feeding pigs increasing levels of C18?:?1 trans fatty acids on fatty acid composition of backfat and intramuscular fat as well as backfat firmness. Arch Anim Nutr 56, 117130.
Ha, YL, Grimm, NK & Pariza, MW (1989) Newly recognized anticarcinogenic fatty acids: identification and quantification in natural and processed cheeses. J Agric Food Chem 37, 7581.
Innis, SM (1993) Essential fatty acid requirements in human nutrition. Can J Physiol Pharmacol 71, 699706.
Ip, C, Briggs, SP, Haegele, AD, Thompson, HJ, Storkson, J & Scimeca, JA (1996) The efficacy of conjugated linoleic acid in mammary cancer prevention is independent of the level or type of fat in the diet. Carcinogenesis 17, 10451050.
Ip, C, Scimeca, JA & Thompson, HJ (1994) Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer 74, 10501054.
Jiménez-Colmenero, F,Carballo, J & Cofrades, S (2001) Healthier meat and meat products: their role as functional foods. Meat Science 59, 513.
Joo, ST, Lee, JI, Ha, YL & Park, GB (2002) Effects of dietary conjugated linoleic acid on fatty acid composition, lipid oxidation, color, and water-holding capacity of pork loin. J Anim Sci 80, 108112.
Kramer, JK, Sehat, N, Dugan, ME et al. (1998) Distributions of conjugated linoleic acid (CLA) isomers in tissue lipid classes of pigs fed a commercial CLA mixture determined by gas chromatography and silver ion-high-performance liquid chromatography. Lipids 33, 549558.
Lee, KN, Pariza, MW & Ntambi, JM (1998) Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase mRNA expression. Biochem Biophysic Res Comm 248, 817821.
O'Quinn, PR, Andrews, BS, Goodband, RD et al. (2000) Effects of modified tall oil and creatine monohydrate on growth performance, carcass characteristics, and meat quality of growing-finishing pigs. J Anim Sci 78, 23762382.
Ostrowska, E, Dunshea, FR, Muralitharan, M & Cross, RF (2000) Comparison of silver-ion high-performance liquid chromatographic quantification of free and methylated conjugated linoleic acids. Lipids 35, 11471153.
Ostrowska, E, Muralitharan, M, Cross, RF, Bauman, DE & Dunshea, FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 129, 20372042.
Ostrowska, E, Suster, D, Leury, BJ et al. (2003) Conjugated linoleic acid decreases fat accretion in pigs: evaluation by dual-energy X-ray absorptiometry. Brit J Nutr 89, 219229.
Park, Y, Albright, KJ, Liu, W, Cook, ME & Pariza, MW (1995) Dietary conjugated linoleic acid (CLA) reduces body fat content and isomers of CLA are incorporated into phospholipid fraction. In IFT Annual Meeting, p. 183. Madison, WI: University of Wisconsin, Department of Food Microbiology and Toxicology.
Park, Y, Albright, KJ, Storkson, JM, Liu, W, Cook, ME & Pariza, MW (1999) Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids 34, 243248.
Payne, RW, Lane, PW & Genstat 5 Committee (1993) Genstat 5 Reference Manual. Oxford: Oxford Science Publications.
Pariza, MW, Park, Y & Cook, ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40, 283298.
Parodi, PW (1994) Conjugated linoleic acid: an anticarcinogenic fatty acid present in milk. J Dairy Technol 49, 9397.
Peterson, DG, Baumgard, LH & Bauman, DE (2002) Short communication: milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid (CLA). J Dairy Sci 85, 17641766.
Ramsay, TG, Evock-Clover, CM, Steele, NC & Azain, MJ (2001) Dietary conjugated linoleic acid alters fatty acid composition of pig skeletal muscle and fat. J Anim Sci 79, 21522161.
Ritzenthaler, KL, McGuire, MK, Falen, R, Shulthz, TD, Dasgupta, N & McGuire, MA (2001) Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 131, 15481554.
Standing Committee on Agriculture (1987) Feeding Standards for Australian Livestock. Pigs. Melbourne: CSIRO Publications.
Shultz, TD, Chew, BP & Seaman, WR (1992) Differential stimulatory and inhibitory responses of human MCF-7 breast cancer cells to linoleic acid and conjugated linoleic acid in culture. Anticancer Res 12, 21432145.
Stone, KJ, Willis, AL, Hart, WM, Kirtland, SJ, Kernoff, PB & McNicol, GP (1979) The metabolism of dihomo-gamma-linolenic acid in man. Lipids 14, 174180.
Sugano, M, Tsujita, A, Yamasaki, M, Yamada, K, Ikeda, I & Kritchevsky, D (1997) Lymphatic recovery, tissue distribution, and metabolic effects of conjugated linoleic acid in rats. Nutr Biochem 8, 3843.
Ulbricht, TLV & Southgate, DAT (1991) Coronary heart disease: seven dietary factors. Lancet 338, 985992.
Voorrips, LE, Brants, HAM, Kardinaal, AFM, Hiddink, GJ, van den Brandt, PA & Goldbohm, RA (2002) Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: the Netherlands Cohort Study on diet and cancer. Am J Clin Nutr 76, 873882.
Warnants, N, Van Oeckel, MJ & Boucque, CV (1999) Incorporation of dietary polyunsaturated fatty acids into pork fatty tissues. J Anim Sci 77, 24782490.
Whigham, LD, Look, ME & Atkinson, RL (2000) Conjugated linoleic acid: implications for human health. Pharmacol Res 42, 503510.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed