Skip to main content Accessibility help
×
Home

The development and evaluation of a novel Internet-based computer program to assess previous-day dietary and physical activity behaviours in adults: the Synchronised Nutrition and Activity Program for Adults (SNAPA™)

  • Frances C. Hillier (a1), Alan M. Batterham (a2), Sean Crooks (a3), Helen J. Moore (a1) and Carolyn D. Summerbell (a1)...

Abstract

The Synchronised Nutrition and Activity Program for Adults (SNAPA™) was developed to address the need for accurate, reliable, feasible, inexpensive and low-burden methods for assessing specific dietary and physical activity behaviours in adults. Short-term test–retest reliability of SNAPA™ was assessed in forty-four adults (age 41·4 (sd 17·3) years) who completed SNAPA™ twice in 1 day. Concurrent validity against direct dietary observation and combined heart rate and accelerometry was assessed in seventy-seven adults (age 34·4 (sd11·1) years). Test–retest reliability revealed no substantial systematic shifts in mean values of the outcome variables: percentage of food energy from fat (% fat), number of portions of fruit and vegetables (FV) and minutes of moderate-to-vigorous physical activity (MVPA). For lunchtime dietary intake, the mean match rate between food items reported using SNAPA™ and those observed was 81·7 %, with a phantom rate of 5·6 %. Pearson's correlations between SNAPA™ and the reference methods ranged from 0·27 to 0·56 for % fat, FV portions and minutes of MVPA. For % fat and FV intake, there was no fixed or proportional bias, and mean differences between the methods (SNAPA™ − reference) were 5·1 % and 0 portions, respectively. For minutes of MVPA, a fixed bias of − 28 min was revealed when compared with all minutes of MVPA measured by combined heart rate and accelerometry, whereas a proportional bias (slope 1·47) was revealed when compared with minutes carried out in bouts ≥ 10 min. SNAPA™ is a promising tool for measuring specific energy balance behaviours, though further work is required to improve accuracy for physical activity behaviours.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The development and evaluation of a novel Internet-based computer program to assess previous-day dietary and physical activity behaviours in adults: the Synchronised Nutrition and Activity Program for Adults (SNAPA™)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The development and evaluation of a novel Internet-based computer program to assess previous-day dietary and physical activity behaviours in adults: the Synchronised Nutrition and Activity Program for Adults (SNAPA™)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The development and evaluation of a novel Internet-based computer program to assess previous-day dietary and physical activity behaviours in adults: the Synchronised Nutrition and Activity Program for Adults (SNAPA™)
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr F. C. Hillier, fax +44 191 334 0374, email frances.hillier@durham.ac.uk

References

Hide All
1 Taren, D, Dwyer, J, Freedman, L, et al. (2002) Dietary assessment methods: where do we go from here? Public Health Nutr 5, 10011003.
2 Livingstone, MBE, Robson, PJ, Wallace, JMW, et al. (2003) How active are we? Levels of routine physical activity in children and adults. Proc Nutr Soc 62, 681701.
3 World Health Organisation (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. WHO Technical Report Series no. 894. Geneva: WHO.
4 European Science Foundation (2009) ESF Exploratory Workshop on Exploring New Directions for the Assessment of Dietary Intake and Physical Activity Levels: Scientific Report. http://www.esf.org/activities/exploratory-workshops/workshops-list.html?year = 2009&domain = (accessed November 2010).
5 Kohlmeier, L, Mendez, M, McDuffie, J, et al. (1997) Computer-assisted self-interviewing: a multimedia approach to dietary assessment. Am J Clin Nutr 65, 1275S1281S.
6 Slimani, N, Deharveng, G, Charrondière, RU, et al. (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. Comput Methods Programs Biomed 58, 251266.
7 Subar, AF, Crafts, J, Zimmerman, TP, et al. (2010) Assessment of the accuracy of portion size reports using computer-based food photographs aids in the development of an automated self-administered 24-hour recall. J Am Diet Assoc 110, 5564.
8 Zoellner, J, Anderson, J & Gould, SM (2005) Comparative validation of a bilingual interactive multimedia dietary assessment tool. J Am Diet Assoc 105, 12061214.
9 Moshfegh, AJ, Rhodes, DG, Baer, DJ, et al. (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.
10 Baranowski, T, Islam, N, Baranowski, J, et al. (2002) The food intake recording software system is valid among fourth-grade children. J Am Diet Assoc 102, 380385.
11 Vereecken, CA, Covents, M, Haynie, D, et al. (2009) Feasibility of the young children's nutrition assessment on the web. J Am Diet Assoc 109, 18961902.
12 Vereecken, CA, Covents, M, Matthys, C, et al. (2005) Young adolescents' nutrition assessment on computer (YANA-C). Eur J Clin Nutr 59, 658667.
13 McMurray, R, Harrell, J, Bradley, C, et al. (1998) Comparison of a computerized physical activity recall with a triaxial motion sensor in middle-school youth. Med Sci Sports Exerc 30, 12381245.
14 Philippaerts, RM, Matton, L, Wijndaele, K, et al. (2006) Validity of a physical activity computer questionnaire in 12- to 18-year-old boys and girls. Int J Sports Med 27, 131136.
15 Ridley, K, Dollman, J & Olds, TS (2001) Development and validation of a computer delivered physical activity questionnaire (CDPAQ) for children. Pediatr Exerc Sci 13, 3546.
16 Ridley, K, Olds, T & Hill, A (2006) The Multimedia activity recall for children and adolescents (MARCA): development and evaluation. Int J Behav Nutr Phys Act 26, 10.
17 McLure, SA, Reilly, JJ, Crooks, S, et al. (2009) Development and evaluation of a novel computer-based tool for assessing physical activity levels in schoolchildren. Pediatr Exerc Sci 21, 506519.
18 Moore, HJ, Ells, LJ, McLure, SA, et al. (2008) The development and evaluation of a novel computer program to assess previous-day dietary and physical activity behaviours in school children: the Synchronised Nutrition and Activity Program (SNAP). Br J Nutr 99, 12661274.
19 Sallis, J & Saelens, B (2000) Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport 71, S1S14.
20 Tulving, E (1972) Episodic and semantic memory. In Organisation of Memory [Tulving, E and Donaldson, W, editors]. New York: Academic Press.
21 Durante, R & Ainsworth, B (1996) The recall of physical activity: using a cognitive model of the question-answering process. Med Sci Sport Exerc 28, 12821291.
22 Bower, GH, Black, JB & Turner, TJ (1979) Scripts in memory for text. Cogn Psychol 11, 177220.
23 Smith, AF, Jobe, JB & Mingay, DJ (1991) Retrieval from memory of dietary information. Appl Cogn Psychol 5, 269296.
24 Bradburn, N, Rips, L & Shevell, S (1987) Answering autobiographical questions: the impact of memory and inference on surveys. Science 236, 157161.
25 Smith, AF (1991) Cognitive Processes in Long-term Dietary Recall. Vital and Health Statistics, series 6 no. 4. Hyattsville, MD: National Center for Health Statistics.
26 Henderson, L, Gregory, J & Swan, G (2002) The National Diet and Nutrition Survey: Adults Aged 19 to 64 years. Types and Quantities of Foods Consumed, vol. 1. London: TSO.
27 Food Standards Agency (2002) McCance and Widdowson's The Composition of Foods, 6th summary ed. Cambridge: Royal Society of Chemistry.
28 Wrieden, W & Barton, K (2006) Calculation and collation of typical food portion sizes for adults aged 19–64 and older people aged 65 and over. Final Technical Report to the Food Standards Agency (Project N08026). http://www.foodbase.org.uk/results.php?f_report_id = 82 (accessed November 2010).
29 Food Standards Agency (2010) Eat well, be well. http://www.eatwell.gov.uk (accessed November 2010).
30 National Health Service (2010) 5 a Day. http://www.nhs.uk/livewell/5aday (accessed November 2010).
31 Fox, K & Rickards, L (2004) Sport and Leisure: Results from the Sport and Leisure Module of the 2002 General Household Survey. London: TSO.
32 Ainsworth, BE, Haskell, WL, Whitt, MC, et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exer 32, S498S504.
33 Department of Health (2004) At Least Five a Week: Evidence on the Impact of Physical Activity and its Relationship to Health. London: Department of Health.
34 Nelson, M, Erens, B, Bates, B, et al. (2007) Low Income Diet and Nutrition Survey: Summary of Key Findings. A Survey Carried Out on Behalf of the Food Standards Agency. London: TSO.
35 Department of Health (1991) Report on Health and Social Subjects 41 Dietary Reference Values (DRVs) for Food Energy and Nutrients for the UK, Report of the Panel on DRVs of the Committee on Medical Aspects of Food Policy (COMA). London: TSO.
36 Department of Health (1994) Nutritional Aspects of Cardiovascular Disease. Report of the Cardiovascular Review Group of the Committee on Medical Aspects of Food Policy. Report on Health and Social Subjects 46. London: HMSO.
37 Department of Health (1998) Nutritional Aspects of the Development of Cancer. Report of The Working Group on Diet and Cancer of the Committee on Medical Aspects of Food and Nutrition Policy. Report on Health and Social Subjects 48. London: TSO.
38 Cross-Government Obesity Unit, Department of Health & Department of Children Schools and Families (2008) Healthy Weight, Healthy Lives: a Cross-government Strategy for England. London: Department of Health.
39 Brage, S, Brage, N, Franks, PW, et al. (2004) Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol 96, 343351.
40 Assah, FK, Ekelund, U, Brage, S, et al. (2011) Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon. Int J Epidemiol 40, 112120.
41 Brage, S, Brage, N, Franks, PW, et al. (2005) Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr 59, 561570.
42 Crouter, SE, Churilla, JR & Bassett, DR Jr (2007) Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur J Clin Nutr 62, 704711.
43 Thompson, D, Batterham, AM, Bock, S, et al. (2006) Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. J Nutr 136, 10371042.
44 Avons, P, Garthwaite, P, Davies, H, et al. (1988) Approaches to estimating physical activity in the community: calorimetric validation of actometers and heart rate monitoring. Eur J Clin Nutr 42, 185195.
45 Haskell, WL, Yee, MC, Evans, A, et al. (1993) Simultaneous measurement of heart rate and body motion to quantitate physical activity. Med Sci Sports Exerc 25, 109115.
46 Luke, A, Maki, KC, Barkey, N, et al. (1997) Simultaneous monitoring of heart rate and motion to assess energy expenditure. Med Sci Sports Exerc 29, 144148.
47 Strath, SJ, Bassett, DR, Swartz, AM, et al. (2001) Simultaneous heart rate-motion sensor technique to estimate energy expenditure. Med Sci Sports Exerc 33, 21182123.
48 Strath, SJ, Bassett, DRJ, Thompson, DL, et al. (2002) Validity of the simultaneous heart rate motion sensor technique for measuring energy expenditure. Med Sci Sports Exerc 34, 888894.
49 Brage, S, Brage, N, Ekelund, U, et al. (2006) Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. Eur J Appl Physiol 96, 517524.
50 American College of Sports Medicine (2006) ACSM's Guidelines for Exercise Testing and Prescription, 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins.
51 Domel, SB, Baranowski, T, Leonard, SB, et al. (1994) Accuracy of fourth- and fifth-grade students' food records compared with school-lunch observations. Am J Clin Nutr 59, S218S220.
52 Warren, JM, Henry, CJK, Livingstone, MBE, et al. (2003) How well do children aged 5–7 years recall food eaten at school lunch? Public Health Nutr 6, 4147.
53 Passing, H & Bablok, W (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry: part I. J Clin Chem Clin Biochem 21, 709720.
54 Hopkins, W, Marshall, S, Batterham, A, et al. (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41, 313.
55 Conway, JM, Ingwersen, LA & Moshfegh, AJ (2004) Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc 104, 595603.
56 Conway, JM, Ingwersen, LA, Vinyard, BT, et al. (2003) Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr 77, 11711178.
57 Beasley, J, Riley, W & Jean-Mary, J (2005) Accuracy of a PDA-based dietary assessment program. Nutrition 21, 672677.
58 Baxter, SD, Royer, JA, Hardin, JW, et al. (2007) Fourth-grade children are less accurate in reporting school breakfast than school lunch during 24-hour dietary recalls. J Nutr Educ Behav 39, 126133.
59 Baxter, SD, Thompson, WO, Litaker, MS, et al. (2002) Low accuracy and low consistency of fourth-graders' school breakfast and school lunch recalls. J Am Diet Assoc 102, 386395.
60 Cohen, J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates.
61 Vereecken, C, Covents, M & Maes, L (2010) Comparison of a food frequency questionnaire with an online dietary assessment tool for assessing preschool children's dietary intake. J Hum Nutr Diet 23, 502510.
62 Arab, L, Jardack, P & Schoeller, D (2009) Energy validity greater among “under 30s” with Diet Day: a self-administered web-based 24-hour recall. In the International Conference on Diet and Activity Methods Program and Abstracts, June 4–7, 2009, Washington, DC, pp. 318.
63 Bingham, SA, Gill, C, Welch, A, et al. (1994) Comparison of dietary assessment methods in nutritional epidemiology: weighed records v. 24 h recalls, food-frequency questionnaires and estimated-diet records. Br J Nutr 72, 619643.
64 Albanes, D, Conway, JM, Taylor, PR, et al. (1990) Validation and comparison of eight physical activity questionnaires. Epidemiology 1, 6571.
65 Craig, C, Marshall, A, Sjöström, M, et al. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35, 13811395.
66 Matthews, CE, Freedson, PS, Hebert, JR, et al. (2000) Comparing physical activity assessment methods in the Seasonal Variation of Blood Cholesterol Study. Med Sci Sports Exerc 32, 976984.
67 Welk, G, Dzewaltowski, D & Hill, J (2004) Comparison of the computerized ACTIVITYGRAM instrument and the previous day physical activity recall for assessing physical activity in children. Res Q Exerc Sport 75, 3703381.
68 Thompson, FE & Subar, AF (2008) Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease, 2nd ed., pp. 339 [Couston, AM and Boushey, CJ, editors]. London: Elsevier Academic Press.
69 Willett, WC (1998) Nutritional Epidemiology, 2nd ed. New York/Oxford: Oxford University Press.
70 Mertz, W (1992) Food intake measurements: is there a ‘gold standard’? J Am Diet Assoc 92, 14631465.
71 Craig, R, Mindell, J & Hirani, V (2009) Health Survey for England 2008: Physical Activity and Fitness, vol. 1. London: The Information Centre.
72 Briefel, R, Sempos, C, McDowell, M, et al. (1997) Dietary methods research in the Third National Health and Nutrition Examination Survey: underreporting of energy intake. Am J Clin Nutr 65, S1203S1209.
73 Price, GM, Paul, AA, Cole, TJ, et al. (1997) Characteristics of the low-energy reporters in a longitudinal national dietary survey. Br J Nutr 77, 833851.
74 Tooze, JA, Subar, AF, Thompson, FE, et al. (2004) Psychosocial predictors of energy underreporting in a large doubly labeled water study. Am J Clin Nutr 79, 795804.
75 Johansson, G, Wikman, Å, Åhrén, A-M, et al. (2001) Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutr 4, 919927.
76 Pryer, J, Vrijheid, M, Nichols, R, et al. (1997) Who are the ‘low energy reporters’ in the Dietary and Nutritional Survey of British Adults? Int J Epidemiol 26, 146154.

Keywords

The development and evaluation of a novel Internet-based computer program to assess previous-day dietary and physical activity behaviours in adults: the Synchronised Nutrition and Activity Program for Adults (SNAPA™)

  • Frances C. Hillier (a1), Alan M. Batterham (a2), Sean Crooks (a3), Helen J. Moore (a1) and Carolyn D. Summerbell (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed