Skip to main content Accessibility help
×
Home

Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence

  • Sandra Iuliano (a1) and Tom R. Hill (a2)

Abstract

The consumption of high-Ca, high-protein dairy foods (i.e. milk, cheese, yogurt) is advocated for bone health across the lifespan to reduce the risk of low-trauma fractures. However, to date, the anti-fracture efficacy of dairy food consumption has not been demonstrated in randomised controlled trials but inferred from cross-sectional and prospective studies. The anti-fracture efficacy of dairy food consumption is plausible, but testing this requires a robust study design to ensure outcomes are suitably answering this important public health question. The evidence of skeletal benefits of dairy food consumption is equivocal, not because it may not be efficacious but because the study design and execution are often inadequate. The key issues are compliance with dietary intervention, dropouts, sample sizes and most importantly lack of deficiency before intervention. Without careful appraisal of the design and execution of available studies, precarious interpretations of outcomes may be made from these poorly designed or executed studies, without consideration of how study design may be improved. Dairy food interventions in children are further hampered by heterogeneity in growth: in particular sex and maturity-related differences in the magnitude, timing, location and surface-specific site of bone accrual. Outcomes of studies combining children of different sexes and maturity status may be masked or exaggerated by these differences in growth, so inaccurate conclusions are drawn from results. Until these critical issues in study design are considered in future dairy food interventions, the anti-fracture efficacy of dairy food consumption may remain unknown and continue to be based on conjecture.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Dr S. Iuliano, fax +61 3 9496 3365, email sandraib@unimelb.edu.au

References

Hide All
1. Bonnard, GD (1968) Cortical thickness and diaphysial diameter of the metacarpal bones from the age of three months to eleven years. Helv Paediatr Acta 23, 445463.
2. Forest, MG, Sizonenko, PC, Cathiard, AM, et al. (1974) Hypophyso-gonadal function in humans during the first year of life. 1. Evidence for testicular activity in early infancy. J Clin Invest 53, 819828.
3. Maccoby, EE, Doering, CH, Jacklin, CN, et al. (1979) Concentrations of sex hormones in umbilical-cord blood: their relation to sex and birth order of infants. Child Dev 50, 632642.
4. Garn, S (1970) The Earlier Gain and Later Loss of Crtical Bone: Nutritional Perspectives, pp. 3120. Springfield, IL: Charles C. Thomas.
5. Clark, PA & Rogol, AD. (1996) Growth hormones and sex steroid interactions at puberty. Endocrinol Metab Clin North Am 25, 665681.
6. Gasser, T, Kneip, A, Binding, A, et al. (1991) The dynamics of linear growth in distance, velocity and acceleration. Ann Hum Biol 18, 187205.
7. Iuliano-Burns, S, Hopper, J & Seeman, E (2009) The age of puberty determines sexual dimorphism in bone structure: a male/female co-twin control study. J Clin Endocrinol Metab 94, 16381643.
8. Bates, B, Lennox, A, Prentice, A, et al. (2014) National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012). London: PHE Publications.
9. Cribb, VL, Northstone, K, Hopkins, D, et al. (2015) Sources of vitamin D and calcium in the diets of preschool children in the UK and the theoretical effect of food fortification. J Hum Nutr Diet 28, 583592.
10. Gao, X, Wilde, PE, Lichtenstein, AH, et al. (2006) Meeting adequate intake for dietary calcium without dairy foods in adolescents aged 9 to 18 years (National Health and Nutrition Examination Survey 2001–2002). J Am Diet Assoc 106, 17591765.
11. O’Neil, CE, Nicklas, TA & Fulgoni, VL III (2018) Food sources of energy and nutrients of public health concern and nutrients to limit with a focus on milk and other dairy foods in children 2 to 18 years of age: National Health and Nutrition Examination Survey, 2011–2014. Nutrients 10, E1050.
12. Zhu, K, Greenfield, H, Du, X, et al. (2008) Effects of two years’ milk supplementation on size-corrected bone mineral density of Chinese girls. Asia Pacific J Clin Nutr 17, Suppl. 1, 147150.
13. Gibbons, MJ, Gilchrist, NL, Frampton, C, et al. (2004) The effects of a high calcium dairy food on bone health in pre-pubertal children in New Zealand. Asia Pac J Clin Nutr 13, 341347.
14. Iuliano-Burns, S, Wang, XF, Evans, A, et al. (2006) Skeletal benefits from calcium supplementation are limited in children with calcium intakes near 800 mg daily. Osteoporos Int 17, 17941800.
15. Du, X, Zhu, K, Trube, A, et al. (2004) School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr 92, 159168.
16. Lau, EM, Lynn, H, Chan, YH, et al. (2004) Benefits of milk powder supplementation on bone accretion in Chinese children. Osteoporos Int 15, 654658.
17. Chevalley, T, Bonjour, JP, Ferrari, S, et al. (2005) Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab 90, 33423349.
18. Cheng, S, Lyytikainen, A, Kroger, H, et al. (2005) Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10–12-y-old girls: a 2-y randomized trial. Am J Clin Nutr 82, 11151126.
19. Bonjour, JP, Carrie, AL, Ferrari, S, et al. (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99, 12871294.
20. Merrilees, MJ, Smart, EJ, Gilchrist, NL, et al. (2000) Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr 39, 256262.
21. Iuliano-Burns, S, Saxon, L, Naughton, G, et al. (2003) Regional specificity of exercise and calcium during skeletal growth in girls: a randomised controlled trial. J Bone Miner Res 18, 156162.
22. Chan, GM, Hoffman, K & McMurry, M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126, 551556.
23. Cadogan, J, Eastell, R, Jones, N, et al. (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ 315, 12551260.
24. Bailey, DA, Martin, AD, McKay, HA, et al. (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15, 22452250.
25. Weaver, CM, Martin, BR, Plawecki, KL, et al. (1995) Differences in calcium metabolism between adolescent and adult females. Am J Clin Nutr 61, 577581.
26. Wastney, ME, Ng, J, Smith, D, et al. (1996) Differences in calcium kinetics between adolescent girls and young women. Am J Physiol 271, 208216.
27. Huncharek, M, Muscat, J & Kupelnick, B (2008) Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 43, 312321.
28. Compston, JE & Seeman, E (2006) Compliance with osteoporosis therapy is the weakest link. Lancet 368, 973974.
29. Hoppe, C, Molgaard, C, Juul, A, et al. (2004) High intakes of skimmed milk, but not meat, increase serum IGF-I and IGFBP-3 in eight-year-old boys. Eur J Clin Nutr 58, 12111216.
30. Hoppe, C, Molgaard, C, Dalum, C, et al. (2009) Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 63, 10761083.
31. Bonjour, JP, Chevalley, T, Ferrari, S, et al. (2009) The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex 51, Suppl. 1, S5S17.
32. Baxter-Jones, AD, Faulkner, RA, Forwood, MR, et al. (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26, 17291739.
33. Seeman, E (2010) Evidence that calcium supplements reduce fracture risk is lacking. Clin J Am Soc Nephrol 5, Suppl. 1, S3S11.
34. Seeman, E, Bianchi, G, Khosla, S, et al. (2006) Bone fragility in men – where are we? Osteoporos Int 17, 15771583.
35. Dawson-Hughes, B, Harris, SS, Krall, EA, et al. (2000) Effect of withdrawal of calcium and vitamin D supplements on bone mass in elderly men and women. Am J Clin Nutr 72, 745750.
36. Dawson-Hughes, B & Dallal, GE (1990) Effect of radiographic abnormalities on rate of bone loss from the spine. Calcif Tissue Int 46, 280281.
37. Kruger, MC, Booth, CL, Coad, J, et al. (2006) Effect of calcium fortified milk supplementation with or without vitamin K on biochemical markers of bone turnover in premenopausal women. Nutrition 22, 11201128.
38. Kruger, MC, Chan, YM, Kuhn-Sherlock, B, et al. (2016) Differential effects of calcium- and vitamin D-fortified milk with FOS-inulin compared to regular milk, on bone biomarkers in Chinese pre- and postmenopausal women. Eur J Nutr 55, 19111921.
39. Woo, J, Lau, W, Xu, L, et al. (2007) Milk supplementation and bone health in young adult chinese women. J Womens Health 16, 692702.
40. Daly, RM, Brown, M, Bass, S, et al. (2006) Calcium- and vitamin D3-fortified milk reduces bone loss at clinically relevant skeletal sites in older men: a 2-year randomized controlled trial. J Bone Miner Res 21, 397405.
41. Moschonis, G, Katsaroli, I, Lyritis, GP, et al. (2010) The effects of a 30-month dietary intervention on bone mineral density: the Postmenopausal Health Study. Br J Nutr 104, 100107.
42. Kruger, MC, Schollum, LM, Kuhn-Sherlock, B, et al. (2010) The effect of a fortified milk drink on vitamin D status and bone turnover in post-menopausal women from South East Asia. Bone 46, 759767.
43. Kruger, MC, Ha, PC, Todd, JM, et al. (2012) High-calcium, vitamin D fortified milk is effective in improving bone turnover markers and vitamin D status in healthy postmenopausal Chinese women. Eur J Clin Nutr 66, 856861.
44. Ting, GP, Tan, SY, Chan, SP, et al. (2007) A follow-up study on the effects of a milk supplement on bone mineral density of postmenopausal Chinese women in Malaysia. J Nutr Health Aging 11, 6973.
45. Chee, WS, Suriah, AR, Chan, SP, et al. (2003) The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos Int 14, 828834.
46. Lau, EM, Lynn, H, Chan, YH, et al. (2002) Milk supplementation prevents bone loss in postmenopausal Chinese women over 3 years. Bone 31, 536540.
47. Chen, Y, Xiao, Y, Xie, B, et al. (2016) Effect of milk powder supplementation with different calcium contents on bone mineral density of postmenopausal women in northern China: a randomized controlled double-blind trial. Calcif Tissue Int 98, 6066.
48. Mardones, F, Urrutia, MT, Villarroel, L, et al. (2008) Effects of a dairy product fortified with multiple micronutrients and omega-3 fatty acids on birth weight and gestation duration in pregnant Chilean women. Public Health Nutr 11, 3040.
49. Bonjour, JP, Benoit, V, Rousseau, B, et al. (2012) Consumption of vitamin D-and calcium-fortified soft white cheese lowers the biochemical marker of bone resorption TRAP 5b in postmenopausal women at moderate risk of osteoporosis fracture. J Nutr 142, 698703.
50. Heaney, RP, McCarron, DA, Dawson-Hughes, B, et al. (1999) Dietary changes favorably affect bone remodeling in older adults. J Am Diet Assoc 99, 12281233.
51. Heaney, RP, Rafferty, K & Dowell, MS (2002) Effect of yogurt on a urinary marker of bone resorption in postmenopausal women. J Am Dietetic Assoc 102, 16721674.
52. Johansson, H, Oden, A, Kanis, JA, et al. (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94, 560567.
53. Schurch, MA, Rizzoli, R, Slosman, D, et al. (1998) Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 128, 801809.
54. Volkert, D (2011) The role of nutrition in the prevention of sarcopenia. Wien Med Wochenschr 161, 409415.
55. Gaffney-Stomberg, E, Insogna, KL, Rodriguez, NR, et al. (2009) Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc 57, 10731079.
56. Bauer, J, Biolo, G, Cederholm, T, et al. (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14, 542559.
57. Manios, Y, Moschonis, G, Panagiotakos, DB, et al. (2009) Changes in biochemical indices of bone metabolism in post-menopausal women following a dietary intervention with fortified dairy products. J Hum Nutr Diet 22, 156165.
58. Kerstetter, JE, Bihuniak, JD, Brindisi, J, et al. (2015) The effect of a whey protein supplement on bone mass in older Caucasian adults. J Clin Endocrinol Metab 100, 22142222.
59. Bonjour, JP, Benoit, V, Pourchaire, O, et al. (2009) Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women. Br J Nutr 102, 962966.
60. Daly, RM, Petrass, N, Bass, S, et al. (2008) The skeletal benefits of calcium- and vitamin D3-fortified milk are sustained in older men after withdrawal of supplementation: an 18-mo follow-up study. Am J Clin Nutr 87, 771777.
61. Sanders, KM, Nicholson, GC, Ugoni, AM, et al. (1999) Health burden of hip and other fractures in Australia beyond 2000. Projections based on the Geelong Osteoporosis Study. Med J Aust 170, 467470.
62. United Nations (2012) Population ageing and development: ten years after Madrid. Department of Economic and Social Affairs PD. Contract no. 2012/4.
63. Christensen, K, Doblhammer, G, Rau, R, et al. (2009) Ageing populations: the challenges ahead. Lancet 374, 11961208.
64. Gullberg, B, Johnell, O & Kanis, JA (1997) World-wide projections for hip fracture. Osteoporos Int 7, 407413.
65. Cooper, C, Campion, G & Melton, LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2, 285289.
66. Rose, G (2001) Sick individuals and sick populations. 1985. Bull World Health Organ 79, 990996.
67. FAO/WHO (2004) Vitamin and Mineral Requirements in Human Nutrition, 2nd ed. Geneva: World Health Organization.
68. Iuliano, S, Poon, S, Wang, X, et al. (2017) Dairy food supplementation may reduce malnutrition risk in institutionalised elderly. Br J Nutr 117, 142147.
69. Dawson-Hughes, B, Dallal, GE, Krall, EA, et al. (1990) A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. New Engl J Med 323, 878883.
70. Recker, RR, Hinders, S, Davies, KM, et al. (1996) Correcting calcium nutritional deficiency prevents spine fractures in elderly women. J Bone Miner Res 11, 19611966.
71. Abbasi, AA & Rudman, D (1994) Undernutrition in the nursing home: prevalence, consequences, causes and prevention. Nutr Rev 52, 113122.
72. Ismail, AA, O’Neill, TW, Cockerill, W, et al. (2000) Validity of self-report of fractures: results from a prospective study in men and women across Europe. EPOS Study Group. European Prospective Osteoporosis Study Group. Osteoporos Int 11, 248254.
73. Woods, J, Walker, K, Iuliano-Burns, S, et al. (2009) Malnutrition on the menu: nutritional status of institutionalised elderly Australians in low-level care. J Nutr Health Aging 13, 693698.
74. Sanders, KM, Seeman, E, Ugoni, AM, et al. (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10, 240247.
75. Chapuy, MC, Arlot, ME, Duboeuf, F, et al. (1992) Vitamin D3 and calcium to prevent hip fractures in the elderly women. New Engl J Med 327, 16371642.
76. Bonjour, JP, Benoit, V, Payen, F, et al. (2013) Consumption of yogurts fortified in vitamin D and calcium reduces serum parathyroid hormone and markers of bone resorption: a double-blind randomized controlled trial in institutionalized elderly women. J Clin Endocrinol Metab 98, 29152921.
77. Iuliano-Burns, S, Woods, J, King, K, et al. (2012) A dairy-based protein, calcium and vitamin D supplement reduces falls and femoral neck bone loss in aged care residents: a cluster randomised trial. J Aging Res Clin Pract 2, 141146.
78. Iuliano, S, Woods, J & Robbins, J (2013) Consuming two additional serves of dairy food a day significantly improves energy and nutrient intakes in ambulatory aged care residents: a feasibility study. J Nutr Health Aging 17, 509513.
79. Ethgen, O, Hiligsmann, M, Burlet, N, et al. (2015) Public health impact and cost-effectiveness of dairy products supplemented with vitamin D in prevention of osteoporotic fractures. Arch Public Health 73, 48.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed