Skip to main content Accessibility help
×
Home

Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus

  • Jing-jing Tian (a1) (a2), Cai-xia Lei (a1), Hong Ji (a1), Gen Kaneko (a3), Ji-shu Zhou (a1), Hai-bo Yu (a1), Yang Li (a1), Er-meng Yu (a2) and Jun Xie (a2)...

Abstract

Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPAR α, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPAR α and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor H. Ji, fax +86 029 87092585, email jihong@nwsuaf.edu.cn

References

Hide All
1. Higgs, D & Dong, F (2000) Lipids and fatty acids. In Encyclopedia of Aquaculture, pp. 476496 [RR Stickney, editor]. New York: John Wiley and Sons.
2. Kiron, V, Thawonsuwan, J, Panigrahi, A, et al. (2011) Antioxidant and immune defences of rainbow trout (Oncorhynchus mykiss) offered plant oils differing in fatty acid profiles from early stages. Aquacult Nutr 17, 130140.
3. Ji, H, Li, J & Liu, P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus . Comp Biochem Physiol B Biochem Mol Biol 159, 4956.
4. Tian, J, Ji, H, Oku, H, et al. (2014) Effects of dietary arachidonic acid (ARA) on lipid metabolism and health status of juvenile grass carp, Ctenopharyngodon idellus . Aquaculture 430, 5765.
5. Bell, JG & Sargent, JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218, 491499.
6. Tocher, DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11, 107184.
7. Yin, H, Zhou, Y, Zhu, M, et al. (2013) Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 13, 209224.
8. Funk, CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 18711875.
9. Wang, D & DuBois, RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10, 181193.
10. Hamre, K, Moren, M, Solbakken, J, et al. (2005) The impact of nutrition on metamorphosis in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 250, 555565.
11. Halver, JE & Hardy, RW (2002) Fish Nutrition, 3rd ed. San Diego, CA: Academic Press.
12. Moreno, JJ (2009) Differential effects of arachidonic and eicosapentaenoic acid-derived eicosanoids on polymorphonuclear transmigration across endothelial cell cultures. J Pharmacol Exp Ther 331, 11111117.
13. Rodríguez-Lagunas, MJ, Ferrer, R & Moreno, JJ (2013) Effect of eicosapentaenoic acid-derived prostaglandin E3 on intestinal epithelial barrier function. Prostaglandins Leukot Essent Fatty Acids 88, 339345.
14. Fountoulaki, E, Alexis, M, Nengas, I, et al. (2003 ) Effects of dietary arachidonic acid (20:4n-6), on growth, body composition, and tissue fatty acid profile of gilthead bream fingerlings (Sparus aurata L.). Aquaculture 225, 309323.
15. Atalah, E, Hernández-Cruz, CM, Ganuza, E, et al. (2011) Importance of dietary arachidonic acid for the growth, survival and stress resistance of larval European sea bass (Dicentrarchus labrax) fed high dietary docosahexaenoic and eicosapentaenoic acids. Aquacult Res 42, 12611268.
16. Carrier, JK III, Watanabe, WO, Harel, M, et al. (2011) Effects of dietary arachidonic acid on larval performance, fatty acid profiles, stress resistance, and expression of Na+/K+ ATPase mRNA in black sea bass Centropristis striata . Aquaculture 319, 111121.
17. Rezek, TC, Watanabe, WO, Harel, M, et al. (2010) Effects of dietary docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) on the growth, survival, stress resistance and fatty acid composition in black sea bass Centropristis striata (Linnaeus 1758) larvae. Aquacult Res 41, 13021314.
18. Montero, D, Terova, G, Rimoldi, S, et al. (2015) Modulation of the expression of components of the stress response by dietary arachidonic acid in European sea bass (Dicentrarchus labrax) larvae. Lipids 50, 10291041.
19. Xu, H, Ai, Q, Mai, K, et al. (2010) Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 307, 7582.
20. Furne, M, Holen, E, Araujo, P, et al. (2013) Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod (Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid. Fish Shellfish Immunol 34, 770777.
21. Shahkar, E, Yun, H, Lee, S, et al. (2016) Evaluation of the optimum dietary arachidonic acid level and its essentiality based on growth and non-specific immune responses in Japanese eel, Anguilla japonica . Aquaculture 452, 209216.
22. Norambuena, F, Estévez, A, Mañanós, E, et al. (2013) Effects of graded levels of arachidonic acid on the reproductive physiology of Senegalese sole (Solea senegalensis): fatty acid composition, prostaglandins and steroid levels in the blood of broodstock bred in captivity. Gen Comp Endocrinol 191, 92101.
23. Norambuena, F, Morais, S, Estévez, A, et al. (2013) Dietary modulation of arachidonic acid metabolism in senegalese sole (Solea Senegalensis) broodstock reared in captivity. Aquaculture 372, 8088.
24. Xu, H, Cao, L, Zhang, Y, et al. (2017) Dietary arachidonic acid differentially regulates the gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis), depending on fish gender and maturation stage. Aquaculture 468, 378385.
25. Villalta, M, Estévez, A & Bransden, MP (2005) Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae. Aquaculture 245, 193209.
26. Boglino, A, Wishkerman, A, Darias, MJ, et al. (2014) Senegalese sole (Solea senegalensis) metamorphic larvae are more sensitive to pseudo-albinism induced by high dietary arachidonic acid levels than post-metamorphic larvae. Aquaculture 433, 276287.
27. Wishkerman, A, Boglino, A, Darias, M J, et al. (2016) Image analysis-based classification of pigmentation patterns in fish: a case study of pseudo-albinism in Senegalese sole. Aquaculture 464, 303308.
28. Lie, KK, Kvalheim, K, Rasinger, JD, et al. (2016) Vitamin A and arachidonic acid altered the skeletal mineralization in Atlantic cod (Gadus morhua) larvae without any interactions on the transcriptional level. Comp Biochem Physiol A Mol Integr Physiol 191, 8088.
29. Boglino, A, Darias, MJ, Estévez, A, et al. (2012) The effect of dietary arachidonic acid during the Artemia feeding period on larval growth and skeletogenesis in Senegalese sole, Solea senegalensis. J Appl Ichthyol 28, 411418.
30. Norambuena, F, Morais, S, Emery, JA, et al. (2015) Arachidonic acid and eicosapentaenoic acid metabolism in juvenile Atlantic salmon as affected by water temperature. PLOS ONE 10, e0143622.
31. Norambuena, F, Rombenso, A & Turchini, GM (2016) Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the manipulation of dietary ARA/EPA ratio. Aquaculture 450, 4857.
32. Tian, JJ, Lei, CX, Ji, H, et al. (2016) Dietary arachidonic acid has a time-dependent differential impact on adipogenesis modulated via COX and LOX pathways in Grass carp Ctenopharyngodon idellus . Lipids 51, 13251338.
33. Tian, JJ, Lei, CX, Ji, H, et al. (2017) Role of cyclooxygenase-mediated metabolites in lipid metabolism and expression of some immune-related genes in juvenile grass carp (Ctenopharyngodon idellus) fed arachidonic acid. Fish Physiol Biochem 43, 703717.
34. Liu, P, Li, C, Huang, J, et al. (2014) Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo . Fish Physiol Biochem 40, 14471460.
35. Li, C, Liu, P, Ji, H, et al. (2015) Dietary n-3 highly unsaturated fatty acids affect the biological and serum biochemical parameters, tissue fatty acid profile, antioxidation status and expression of lipid-metabolism-related genes in grass carp, Ctenopharyngodon idellus . Aquacult Nutr 21, 373383.
36. Tian, JJ, Lu, RH, Ji, H, et al. (2015) Comparative analysis of the hepatopancreas transcriptome of grass carp (Ctenopharyngodon idellus) fed with lard oil and fish oil diets. Gene 565, 192200.
37. Glencross, BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult 1, 71124.
38. Tocher, DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult Res 41, 717732.
39. Tian, JJ, Lei, CX & Ji, H (2016) Influence of dietary linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) ratio on fatty acid composition of different tissues in freshwater fish Songpu mirror carp, Cyprinus carpio . Aquacult Res 47, 38113825.
40. Lavell, R (1989) Nutrition and Feeding of Fish. New York: Auburn University.
41. Association of Official Analytical Chemists (1995) Official Methods of Analysis of Official Analytical Chemists International , 16th ed. Arlington, VA: Association of Official Analytical.
42. Folch, J, Lees, M & Sloane Stanley, G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
43. Juaneda, P & Rocquelin, G (1985) Rapid and convenient separation of phospholipids and non phosphorus lipids from rat heart using silica cartridges. Lipids 20, 4041.
44. Liu, P, Ji, H, Li, C, et al. (2015) Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus). Fish Phys Biochem 41, 867878.
45. Osman, OS, Selway, JL, Kępczyńska, MA, et al. (2013) A novel automated image analysis method for accurate adipocyte quantification. Adipocyte 2, 160164.
46. Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402408.
47. Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45e45.
48. Bessonart, M, Izquierdo, MS, Salhi, M, et al. (1999) Effect of dietary arachidonic acid levels on growth and survival of gilthead sea bream (Sparus aurata L.) larvae. Aquaculture 179, 265275.
49. Bell, JG, McVicar, AH, Park, MT, et al. (1991) High dietary linoleic acid affects the fatty acid compositions of individual phospholipids from tissues of Atlantic salmon (Salmo salar): association with stress susceptibility and cardiac lesion. J Nutr 121, 11631172.
50. Turchini, GM, Torstensen, BE & Ng, WK (2009) Fish oil replacement in finfish nutrition. Rev Aquacult 1, 1057.
51. Gray, JI (1978) Measurement of lipid oxidation: a review. J Am Oil Chem Soc 55, 539546.
52. Halliwell, B & Gutteridge, JM (2015) Free Radicals in Biology and Medicine. New York: Oxford University Press.
53. Surapaneni, K & Venkataramana, G (2007) Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis. Indian J Med Sci 61, 914.
54. Luo, Z, Tan, XY, Li, XD, et al. (2012) Effect of dietary arachidonic acid levels on growth performance, hepatic fatty acid profile, intermediary metabolism and antioxidant responses for juvenile Synechogobius hasta . Aquacult Nutr 18, 340348.
55. Zuo, R, Ai, Q, Mai, K, et al. (2012) Effects of dietary n-3 highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Fish Shellfish Immunol 32, 249258.
56. Todorčević, M, Kjær, MA, Djaković, N, et al. (2009) n-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp Biochem Physiol B Biochem Mol Biol 152, 135143.
57. Todorčević, M & Hodson, L (2015) The effect of marine derived n-3 fatty acids on adipose tissue metabolism and function. J Clin Med 5, 3.
58. Frühbeck, G, Méndez-Giménez, L, Fernández-Formoso, JA, et al. (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27, 6393.
59. Eckel, RH (1989) Lipoprotein lipase. New Engl J Med 320, 10601068.
60. Nilsson-Ehle, P, Garfinkel, AS & Schotz, MC (1980) Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 49, 667693.
61. Connelly, PW (1999) The role of hepatic lipase in lipoprotein metabolism. Clin Chim Acta 286, 243255.
62. Minarik, P, Tomaskova, N, Kollarova, M, et al. (2002) Malate dehydrogenases-structure and function. Gen Physiol Biophys 21, 257266.
63. Phillips, MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66, 616623.
64. Sun, J, Ji, H, Li, XX, et al. (2016) Lipolytic enzymes involving lipolysis in teleost: synteny, structure, tissue distribution, and expression in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol B Biochem Mol Biol 198, 110118.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed