Skip to main content Accessibility help
×
Home

The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats

  • Haw-Wen Chen (a1), Chia-Wen Tsai (a1), Jaw-Ji Yang (a2), Cheng-Tze Liu (a1), Wei-Wen Kuo (a3) and Chong-Kuei Lii (a1)...

Abstract

This present study was designed to investigate the combined modulatory effect of garlic oil (GO) and fish oil (FO) on the antioxidant and drug metabolism systems. Rats were fed either a low-maize oil (MO) diet (50 g MO/kg), high-MO diet (235 g MO/kg) or high-FO diet (205 g FO+30 g MO/kg) and received different doses of GO (0–200 mg/kg body weight) three times per week for 6 weeks. Fatty acid analysis showed that 20: 5n−3 and 22: 6n−3 were incorporated into serum lipid at the expense of 18: 2n−6 and 20: 4n−6 in rats fed the high-FO diet. GO dose-dependently increased hepatic glutathione S-transferase (GST), glutathione reductase, superoxide dismutase (SOD) and ethoxyresorufin O-deethylase (EROD) activities, but decreased glutathione peroxidase and N-nitrosodimethylamine demethylase (NDMAD) activities (P<0·05). With the exception of glutathione peroxidase, the activities of glutathione reductase, SOD, GST, EROD and NDMAD were modulated by the dietary fat. The high-FO group had greater SOD and EROD activity than either MO-fed group; it also had greater NDMAD activity than the low-MO group (P<0·05). GST activity was higher in rats fed high-FO or high-MO diets than rats fed the low-MO diet. Change in erythromycin demethylase activity, however, was not caused by either dietary fat or GO. Immunoblot assay showed that GO dose-dependently enhanced the protein level of the Ya, Yb1, Yc isoenzymes of GST and cytochrome P450 (CYP) 1A1 and 3A1, but GO suppressed CYP2E1 expression. Regardless of the dosage of GO, the high-FO diet increased CYP1A1, CYP3A1 and CYP2E1 levels compared with the high- and low-MO diets. Accompanying the changes observed in immunoblots, CYP1A1 and CYP3A1 mRNA levels were increased by GO in a dose-dependent manner and also increased additively in combination with FO feeding. These present results indicate that co-administration of GO and FO modulates the antioxidant and drug-metabolizing capacity of animals and that the effect of GO and FO on drug-metabolizing enzymes is additive.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Chong-Kuei Lii, fax +886 4 4739030, email cklii@csmu.edu.tw

References

Hide All
Agarwal, KC (1996) Therapeutic actions of garlic constituents. Medicinal Research Review 16, 111124.
Alder, AJ & Holub, BJ (1997) Effect of garlic-oil and fish-oil supplementation on serum lipid and lipoprotein concentrations in hypercholesterolemic men. American Journal of Clinical Nutrition 65, 445450.
Bang, HO, Dyerberg, J & Sinclair, HM (1980) The composition of the Eskimo food in north western Greenland. American Journal of Clinical Nutrition 33, 26572661.
Bellomo, G, Mirabelli, F, DiMonte, D, Richelmi, P, Thor, H, Orrenius, C & Orrenius, S (1987) Formation and reduction of glutathione-mixed disulfides during oxidative stress. Biochemical Pharmacology 36, 13131320.
Bergelson, S, Pinkus, R & Daniel, V (1994) Induction of AP-1 (Fos/Jun) by chemical agents mediates activation of glutathione S-transferase and quinone reductase gene expression. Oncogene 9, 565571.
Catignani, GL & Bieri, JG (1983) Simultaneous determination of retinol and alpha-tocopherol in serum or plasma by liquid chromatography. Clinical Chemistry 29, 708712.
Chen, HW, Yang, JJ, Tsai, CW, Wu, JJ, Sheen, LY, Ou, CC & Lii, CK (2001) Dietary fat and garlic oil independently regulate hepatic cytochrome P450 2B1 and the placental form of glutathione S-transferase expression in rats. Journal of Nutrition 131, 14381443.
Conney, AH (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture. Cancer Research 42, 48754917.
Crosby, AJ, Wahle, KW & Duthie, GG (1996) Modulation of glutathione peroxidase activity in human vascular endothelial cells by fatty acids and the cytokine interleukin-1 beta. Biochimica et Biophysica Acta 1303, 187192.
Cross, CE, Halliwell, B, Borish, ET, Pryon, WA, Ames, BN, Saul, RL, McCord, JM & Harman, D (1987) Oxygen radicals and human disease. Annals of Internal Medicine 107, 526545.
Dyerberg, J, Bang, HO & Hjørne, N (1975) Fatty acid composition of the plasma lipids in Greenland Eskimos. American Journal of Clinical Nutrition 28, 958966.
Fang, JL, Vaca, CE, Valsta, LM & Mutanen, M (1996) Determination of DNA adducts of malondialdehyde in humans: effects of dietary fatty acids consumption. Carcinogenesis 17, 10351040.
Fernandes, G, Chandrasekar, B, Luan, X & Troyer, DA (1996) Modulation of antioxidant enzymes and programmed cell death by n-3 fatty acids. Lipids 31, S91S96.
Fleischhauer, AT & Arab, L (2001) Garlic and cancer: a critical review of the epidemiologic literature. Journal of Nutrition 131, 1032S1040S.
Folch, J, Lees, M & Sloane-Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.
Fotouhi-Ardakani, N & Batist, G (1999) Genomic cloning and characterization of the rat glutathione S-transferase-A3-subunit gene. Biochemical Journal 339, 685693.
Fox, PL & DiCorleto, PE (1988) Fish oil inhibits endothelial cell production of platelet-derived growth factor-like protein. Science 241, 453456.
Fraga, CG, Leibovitz, BE & Tappel, AL (1988) Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine 4, 155161.
Goodnight, SH Jr, Harris, WS, Connor, WE & Illingworth, DR (1982) Polyunsaturated fatty acids, hyperlipidemia and thrombosis. Arteriosclerosis 2, 87113.
Guengerich, FP (1991) Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chemical Research in Toxicology 4, 391407.
Guengerich, FP (1995) Influence of nutrients and other dietary materials on the cytochrome P-450 enzymes. American Journal of Clinical Nutrition 61, 651S658S.
Habig, WH, Pabst, MJ & Jakoby, WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 71307139.
Hwang, D & Rhee, SH (1999) Receptor-mediated signaling pathways: potential targets of modulation by dietary fatty acids. American Journal of Clinical Nutrtion 70, 545556.
Iqbal, M & Athar, M (1998) Attenuation of iron-nitrilotriacetate (Fe-NTA)-mediated renal oxidative stress, toxicity and hyperproliferative response by the prophylactic treatment of rats with garlic oil. Food and Chemical Toxicology 36, 485495.
Jump, DB (2002) Dietary polyunsaturated fatty acids and regulation of gene expression. Current Opinion in Lipidology 13, 155164.
Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680685.
Lawrence, RA & Burk, RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysics Research Communication 71, 952958.
Leclercq, I, Horsmans, Y, Desager, JP, Delzenne, N & Geubel, AP (1998) Reduction in hepatic cytochrome P-450 is correlated to the degree of liver fat content in animal models of steatosis in the absence of inflammation. Journal of Hepatology 28, 410416.
Leclercq, IA, Farrell, GC, Field, J, Bell, DR, Gonzalez, FJ & Robertson, GR (2000) CYP 2E1 and CYP 4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. Journal of Clinical Investigation 105, 10671075.
Lepage, G & Roy, CC (1986) Direct transesterification of all classes of lipids in one-step reaction. Journal of Lipid Research 27, 114120.
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with Folin phenol reagent. Journal of Biological Chemistry 193, 265275.
Machlin, ZJ & Bendich, A (1987) Free radical tissue damage: protective role for antioxidant nutrients. FASEB Journal 1, 441445.
Morcos, NC (1997) Modulation of lipid profile by fish oil and garlic combination. Journal of the National Medical Association 89, 673678.
Nash, T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical Journal 55, 416421.
National Research Council (1985) Guide for the Care and Use of Laboratory Animals. Publication no. 85–23 (rev.). Bethesda, MD: National Institutes of Health.
Phelps, S & Harris, WS (1993) Garlic supplementation and lipoprotein oxidation susceptibility. Lipids 28, 475477.
Poul, RJ & Fouts, JR (1980) A rapid method for assaying the metabolism of 7-ethoxyresorufin subcellular fractions. Analytical Biochemistry 107, 150155.
Rahman, K (2001) Historical perspective on garlic and cardiovascular disease. Journal of Nutrition 313, 977S979S.
Reddy, BS & Sugie, S (1988) Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane–induced colon carcinogenesis in F344 rats. Cancer Research 48, 66426647.
Reed, DJ, Babson, JR, Beatty, PW, Brodie, AE, Ellis, WW & Potter, DW (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Analytical Biochemistry 106, 5562.
Ruiz-Gutiérrez, V, Pérez-Espinosa, A, Vázquez, CM & Santa-María, C (1999) Effects of dietary fats (fish, olive and high-oleic-acid sunflower oils) on lipid composition and antioxidant enzymes in rat liver. British Journal of Nutrition 82, 233241.
Rushmore, TH & Pickett, CB (1990) Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Journal of Biological Chemistry 165, 1464814653.
Sheen, LY, Chen, HW, Kung, YL, Liu, CT & Lii, CK (1999) Effects of garlic oil and its organosulfur compounds on the activities of hepatic drug-metabolizing and antioxidant enzymes in rats fed high-and low-fat diets. Nutrition and Cancer 35, 160166.
Shimokawa, H & Vanhoutte, PM (1989) Dietary omega-3 fatty acids and endothelium-dependent relaxations in porcine coronary arteries. American Journal of Physiology 256, H968H973.
Sparnins, VL, Barany, G & Wattenberg, LW (1988) Effects of organosulfur compounds from garlic and onions on benzo[a]-pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis 9, 131134.
Su, GM, Sefton, RM & Murray, M (1999) Down-regulation of rat hepatic microsomal P-450 in microvesicular steatosis induced by orotic acid. Journal of Pharmacology and Experimental Therapeutics 291, 953959.
Tsai, CF, Lii, CK, Yang, JJ, Liu, K, Lin, WL & Chen, HW (2001) Prostaglandin E2 is involved in the increase of cytochrome P-450 2B1 expression by alpha-tocopheryl succinate in primary rat hepatocytes in the presence of phenobarbital. Nutrition and Cancer 41, 188195.
Venkatraman, JT, Chandrasekar, B, Kim, JD & Fernandes, G (1994) Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZB×NZW F1 mice. Lipids 29, 561568.
Vos, RM & Van Bladeren, PJ (1990) Glutathione S-transferases in relation to their role in the biotransformation of xenobiotics. Chemico-Biological Interactions 75, 241265.
Waxman, DJ (1999) P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Archives of Biochemistry and Biophysics 369, 1123.
Yang, CS, Smith, TJ & Hong, JY (1994) Cytochrome P-450 enzymes as targets for chemoprevention against chemical carcinogenesis and toxicity: opportunities and limitations. Cancer Research 54, 1982s1986s.

Keywords

Related content

Powered by UNSILO

The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats

  • Haw-Wen Chen (a1), Chia-Wen Tsai (a1), Jaw-Ji Yang (a2), Cheng-Tze Liu (a1), Wei-Wen Kuo (a3) and Chong-Kuei Lii (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.