Skip to main content Accessibility help
×
Home

Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs

  • Marta S. Madeira (a1), Virgínia M. R. Pires (a1), Cristina M. Alfaia (a1), Richard Luxton (a2), Olena Doran (a2), Rui J. B. Bessa (a1) (a3) and José A. M. Prates (a1)...

Abstract

The cumulative effects of dietary arginine, leucine and protein levels on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig longissimus lumborum muscle and subcutaneous adipose tissue (SAT) were investigated. The experiment was performed on fifty-four intact male pigs (Duroc × Pietrain × Large White × Landrace crossbred), with a live weight ranging from 59 to 92 kg. The pigs were randomly assigned to one of six experimental treatments (n 9). The treatments followed a 2 × 3 factorial arrangement, with two levels of arginine supplementation (0 v. 1 %) and three levels of a basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet to achieve 2 % of leucine, RPDL). The results showed that dietary arginine supplementation did not affect the intramuscular fat (IMF) content and back fat thickness, but increased the total fat in SAT. This effect was associated with an increase in fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) mRNA levels in SAT, which suggests that arginine might be involved in the differential regulation of some key lipogenic genes in pig muscle and SAT. The increase in IMF content under the RPD, with or without leucine supplementation, was accompanied by increased FASN and SCD mRNA levels. Arginine supplementation did not influence the percentage of main fatty acids, while the RPD had a significant effect on fatty acid composition in both tissues. Leucine supplementation of RPD did not change IMF, total fat of SAT and back fat thickness, but increased 16 : 0 and 18 : 1cis-9 and decreased 18 : 2n-6 in muscle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: J. A. M. Prates, fax +351 213652895, email japrates@fmv.utl.pt

References

Hide All
1 Eurostat (2013) Production of meat. http://epp.eurostat.ec.europa.eu/ (accessed accessed March 2013).
2 Wood, JD, Nute, GR, Richardson, RI, et al. (2004) Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci 67, 651667.
3 De Vol, DL, McKeith, FK, Bechtel, PJ, et al. (1988) Variations in composition and palatability traits and relationships between muscle: characteristics and palatability in a random sample of pork carcasses. J Anim Sci 66, 385395.
4 Daszkiewicz, T, Bak, T & Denaburski, J (2005) Quality of pork with a different intramuscular fat (IMF) content. Pol J Food Nutr Sci 14, 3135.
5 Wood, J, Enser, M, Fisher, A, et al. (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78, 343358.
6 Jobgen, WS, Fried, SK, Fu, WJ, et al. (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17, 571588.
7 Tan, B, Yin, Y, Liu, Z, et al. (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22, 441445.
8 Tan, BE, Yin, YL, Liu, ZQ, et al. (2009) Dietary l-arginine supplementation increases muscle gain and reduced body fat mass in growing–finishing pigs. Amino Acids 37, 169175.
9 Hyun, Y, Kim, JD, Ellis, M, et al. (2007) Effect of dietary leucine and lysine levels on intramuscular fat content in finishing pigs. Can J Anim Sci 87, 303306.
10 Hyun, Y, Ellis, M, Mckeith, FK, et al. (2003) Effect of dietary leucine level on growth performance, and carcass and meat quality in finishing pigs. Can J Anim Sci 83, 315318.
11 Doran, O, Moule, SK, Teye, GA, et al. (2006) A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: relationship with intramuscular lipid formation. Br J Nutr 95, 609617.
12 Madeira, MS, Pires, VMR, Alfaia, CM, et al. (2013) Differential effects of reduced protein diets on fatty acid composition and gene expression in muscle and subcutaneous adipose tissue of Alentejana purebred and Large White × Landrace × Pietrain crossbred pigs. Br J Nutr 110, 216229.
13 Bergen, WG & Mersmann, HJ (2005) Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135, 24992502.
14 Zhao, S, Wang, J, Song, X, et al. (2010) Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr Metab 7, 6.
15 Herman, MA, Peroni, OD, Villoria, J, et al. (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333338.
16 Dentin, R, Pégorier, JP, Benhamed, F, et al. (2004) Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP1-1c on glycolytic and lipogenic gene expression. J Biol Chem 279, 2031420326.
17 Liu, CY, Grant, AL, Kim, KH, et al. (1994) Porcine somatotropin decreases acetyl-CoA carboxylase gene expression in porcine adipose tissue. Domest Anim Endocrinol 11, 125132.
18 Clarke, SD (1993) Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation. J Anim Sci 71, 19571965.
19 Nakamura, MT & Nara, TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24, 345376.
20 Hocquette, JF, Graulet, B & Olivecrona, T (1998) Lipoprotein lipase activity and mRNA levels in bovine tissues. Comp Biochem Physiol B Biochem Mol Biol 121, 201212.
21 Hocquette, JF, Gondret, F, Baéza, E, et al. (2010) Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 4, 303319.
22 AOAC (2000) Official Methods of Analysis, 17th ed. Arlington, VA: AOAC.
23 Clegg, KM (1956) The application of the anthrone reagent to the estimation of starch in cereals. J Sci Food Agric 70, 4044.
24 Sukhija, PS & Palmquist, DL (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36, 12021206.
25 AOAC (2005) Official Methods of Analysis of the Association of Official Analytical Chemists International, 18th ed, p. 473 [Latimer, GW and Horwitz, W, editors]. Gaithersburg, MD: AOAC International.
26 Henderson, JW, Ricker, RD, Bidlingmeyer, BA, et al. (2000) Rapid, Accurate, Sensitive and Reproducible Analysis of Amino Acids. Palo Alto, CA: Agilent Technologies (Agilent Publication No. 5980-1193EN).
27 Folch, J, Lees, M, Sloane Stanley, GH, et al. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
28 Carlson, LA (1985) Extraction of lipids from human whole serum and lipoproteins and from rat liver tissue with methylene chloride–methanol: a comparison with extraction chloroform–methanol. Clin Chim Acta 149, 8993.
29 Raes, K, De Smet, SD & Demeyer, D (2001) Effect of double-muscling in Belgian Blue young bulls on the intramuscular fatty acid composition with emphasis on conjugated linoleic acid and polyunsaturated fatty acids. Anim Sci 73, 253260.
30 Vandesompele, J, De Preter, K, Pattyn, F, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, 7.
31 Andersen, CL, Jensen, JL & Orntoft, TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 52455250.
32 Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2( − Delta C(T)) method. Methods 25, 402408.
33 Fleige, S, Walf, V, Huch, S, et al. (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28, 16011613.
34 SAS Institute, Inc. (2009) SAS/STAT 9.2 User's Guide, 2nd ed. Cary, NC: SAS Institute, Inc.
35 Milliken, GA & Johnson, DE (2002) Analysis of Messy Data, Volume III: Analysis of Covariance. London: Chapman and Hall/CRC.
36 Alonso, V, Campo, MDM, Provincal, L, et al. (2010) Effect of protein level in commercial diets on pork meat quality. Meat Sci 85, 714.
37 Ma, X, Lin, Y, Jiang, Z, et al. (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38, 95102.
38 Cisneros, R, Ellis, M, Baker, DH, et al. (1996) The influence of short-term feeding of amino-acid deficient diets and high dietary leucine levels on the intramuscular fat content of pig muscle. Anim Sci 63, 517522.
39 Go, G, Wu, G, Silvey, DT, et al. (2012) Lipid metabolism in pigs fed supplemented conjugated linoleic acid and/or dietary arginine. Amino Acids 43, 17131726.
40 Glaser, C, Heinrich, J & Koletzko, B (2010) Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metab Clin Exp 59, 993999.
41 Hagen, RM, Rodriguez-Cuenca, S & Vidal-Puig, A (2010) An allostatic control of membrane lipid composition by SREBP1. FEBS Lett 584, 26892698.
42 Dubuquoy, C, Robichon, C, Lasnier, F, et al. (2011) Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J Hepatology 55, 145153.
43 Michal, JJ, Zhang, ZW, Gaskins, CT, et al. (2006) The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu × Limousin F2 crosses. Anim Genet 37, 400402.
44 Fu, WJ, Haynes, TE, Kohli, R, et al. (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135, 714721.
45 Fouad, AM, El-Senousey, HK, Yang, XJ, et al. (2013) Dietary l-arginine supplementation reduced abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 7, 12391245.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed