Skip to main content Accessibility help
×
Home

The citrus flavanone naringenin suppresses CYP1B1 transactivation through antagonising xenobiotic-responsive element binding

  • Ching Ho Poon (a1), Tsz Yan Wong (a2), Yanfei Wang (a3), Yuki Tsuchiya (a4), Miki Nakajima (a4), Tsuyoshi Yokoi (a4) and Lai K. Leung (a2) (a3)...

Abstract

Exposure to environmental toxicants or exogenous oestrogen increases the risk of cancer. Some toxicants such as polycyclic aromatic hydrocarbons (PAH) undergo biotransformation to become genotoxic agents. Cytochrome p450 (CYP) 1B1 is an enzyme catalysing this transformation. Consumption of fruit and vegetables is considered to be protective against carcinogenesis, and naringenin can be found abundantly in citrus fruits. In the present study, the effect of naringenin on the regulation of CYP1B1 was investigated in MCF-7 cells. Enzyme inhibition assays revealed that naringenin inhibited CYP1B1 at or above 5 μm but not CYP1A1 activity. Quantitative PCR analysis also demonstrated that 1 μm-naringenin reduced CYP1B1 mRNA expression induced by 7,12-dimethylbenz(α)anthracene (DMBA). Further study illustrated that the suppression was at the transcriptional level. Since previous studies have shown that oestrogen response element (ERE) and xenobiotic-responsive element (XRE) are functional binding sequences in the promoter region of CYP1B1, interference of DNA binding on these two elements was pursued. Employing reporter gene assays as well as the electromobility shift assay, we verified that naringenin counteracted DMBA-induced XRE binding at − 1675. These results supported the notion that fruit consumption could be a protective measure against PAH biotransformation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The citrus flavanone naringenin suppresses CYP1B1 transactivation through antagonising xenobiotic-responsive element binding
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The citrus flavanone naringenin suppresses CYP1B1 transactivation through antagonising xenobiotic-responsive element binding
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The citrus flavanone naringenin suppresses CYP1B1 transactivation through antagonising xenobiotic-responsive element binding
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: L. K. Leung, fax +852 26037732, email laikleung@cuhk.edu.hk

References

Hide All
1So, FV, Guthrie, N, Chambers, AF, et al. (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26, 167181.
2Leonardi, T, Vanamala, J, Taddeo, SS, et al. (2010) Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med (Maywood) 235, 710717.
3Miller, EG, Peacock, JJ, Bourland, TC, et al. (2008) Inhibition of oral carcinogenesis by citrus flavonoids. Nutr Cancer 60, 6974.
4Ekambaram, G, Rajendran, P, Magesh, V, et al. (2008) Naringenin reduces tumor size and weight lost in N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr Res 28, 106112.
5IARC (editor) (1983) Polynuclear Aromatic Compounds, Part I, Chemical, Environmental and Experimental Data. Lyon: IARC.
6EPA (1990) Aerometric Information Retrieval System (AIRS), Data for 1985–1990 [Agency, EP, editor]. Research Triangle Park, NC: US Environmental Protection Agency.
7Gonzalez, FJ & Gelboin, HV (1994) Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev 26, 165183.
8Dertinger, SD, Lantum, HB, Silverstone, AE, et al. (2000) Effect of 3′-methoxy-4′-nitroflavone on benzo[a]pyrene toxicity. Aryl hydrocarbon receptor-dependent and -independent mechanisms. Biochem Pharmacol 60, 189196.
9Kronenberg, S, Esser, C & Carlberg, C (2000) An aryl hydrocarbon receptor conformation acts as the functional core of nuclear dioxin signaling. Nucleic Acids Res 28, 22862291.
10Safe, S (2001) Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol Lett 120, 17.
11Shimizu, Y, Nakatsuru, Y, Ichinose, M, et al. (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 97, 779782.
12Buters, JT, Sakai, S, Richter, T, et al. (1999) Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc Natl Acad Sci U S A 96, 19771982.
13Zheng, W, Xie, DW, Jin, F, et al. (2000) Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 9, 147150.
14Helmig, S, Seelinger, JU, Dohrel, J, et al. (2011) RNA expressions of AHR, ARNT and CYP1B1 are influenced by AHR Arg554Lys polymorphism. Mol Genet Metab 104, 180184.
15Paracchini, V, Raimondi, S, Gram, IT, et al. (2007) Meta- and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE-GSEC review. Am J Epidemiol 165, 115125.
16Economopoulos, KP & Sergentanis, TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122, 545551.
17Phillips, DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443, 139147.
18Tsuchiya, Y, Nakajima, M & Yokoi, T (2003) Critical enhancer region to which AhR/ARNT and Sp1 bind in the human CYP1B1 gene. J Biochem 133, 583592.
19Tsuchiya, Y, Nakajima, M, Kyo, S, et al. (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 64, 31193125.
20Bovee, TF, Schoonen, WG, Hamers, AR, et al. (2008) Screening of synthetic and plant-derived compounds for (anti)estrogenic and (anti)androgenic activities. Anal Bioanal Chem 390, 11111119.
21Wang, HK, Yeh, CH, Iwamoto, T, et al. (2012) Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway. J Agric Food Chem 60, 21712178.
22Ciolino, HP & Yeh, GC (1999) The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br J Cancer 79, 13401346.
23Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2( − Delta Delta C(T)) method. Methods 25, 402408.
24Chan, HY, Wang, H & Leung, LK (2003) The red clover (Trifolium pratense) isoflavone biochanin A modulates the biotransformation pathways of 7,12-dimethylbenz[a]anthracene. Br J Nutr 90, 8792.
25Doostdar, H, Burke, MD & Mayer, RT (2000) Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology 144, 3138.
26Hughes, D, Guttenplan, JB, Marcus, CB, et al. (2008) Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila) 1, 485493.
27Tang, YM, Wo, YY, Stewart, J, et al. (1996) Isolation and characterization of the human cytochrome P450 CYP1B1 gene. J Biol Chem 271, 2832428330.
28Sun, YV, Boverhof, DR, Burgoon, LD, et al. (2004) Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 32, 45124523.
29Kaczynski, JA, Conley, AA, Fernandez Zapico, M, et al. (2002) Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochem J 366, 873882.
30Wo, YY, Stewart, J & Greenlee, WF (1997) Functional analysis of the promoter for the human CYP1B1 gene. J Biol Chem 272, 2670226707.
31Delescluse, C, Lemaire, G, de Sousa, G, et al. (2000) Is CYP1A1 induction always related to AHR signaling pathway? Toxicology 153, 7382.
32Kikuchi, H, Hossain, A, Yoshida, H, et al. (1998) Induction of cytochrome P-450 1A1 by omeprazole in human HepG2 cells is protein tyrosine kinase-dependent and is not inhibited by alpha-naphthoflavone. Arch Biochem Biophys 358, 351358.
33Liehr, JG (2000) Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev 21, 4054.
34Shimada, T, Hayes, CL, Yamazaki, H, et al. (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 56, 29792984.
35Peter Guengerich, F, Chun, YJ, Kim, D, et al. (2003) Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res 523–524, 173182.
36Vallejo, F, Larrosa, M, Escudero, E, et al. (2010) Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J Agric Food Chem 58, 65166524.

Keywords

The citrus flavanone naringenin suppresses CYP1B1 transactivation through antagonising xenobiotic-responsive element binding

  • Ching Ho Poon (a1), Tsz Yan Wong (a2), Yanfei Wang (a3), Yuki Tsuchiya (a4), Miki Nakajima (a4), Tsuyoshi Yokoi (a4) and Lai K. Leung (a2) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed