Skip to main content Accessibility help
×
Home

Children recovered from malnutrition exhibit normal insulin production and sensitivity

  • Vinicius J. B. Martins (a1) (a2), Paula A. Martins (a1), Janaína das Neves (a1) and Ana L. Sawaya (a1)

Abstract

Protein–energy malnutrition promotes adaptive hormonal changes that result in stunting. A previous study showed that stunted children had increased insulin sensitivity and diminished pancreatic β-cell function. The objectives of the present study were to analyse the glucose, insulin, homeostasis model assessment of insulin sensitivity (HOMA-S) and homeostasis model assessment of pancreatic β-cell function (HOMA-B) levels after nutritional recovery. The recovered group (n 62) consisted of malnourished children after treatment at a nutrition rehabilitation centre. At the beginning of treatment their age was 2·41 (sd 1·28) and 2·31 (sd 1·08) years, weight-for-age Z score − 2·09 (sd 0·94) and − 2·05 (sd 0·55) and height-for-age Z score − 1·85 (sd 1·11) and − 1·56 (sd 0·90), for boys and girls respectively. The control group consisted of well-nourished children without treatment (n 26). After treatment, boys of the recovered group gained 1·29 (sd 1·06) Z scores of height-for-age and 1·14 (sd 0·99) Z scores of weight-for-age, and girls, 1·12 (sd 0·91) and 1·21 (sd 0·74) Z scores respectively. No differences were found between control and recovered groups in insulin levels for boys (P = 0·704) and girls (P = 0·408), HOMA-B for boys (P = 0·451) and girls (P = 0·330), and HOMA-S (P = 0·765) for boys and girls (P = 0·456) respectively. The present study shows that the changes observed previously in glucose metabolism and insulin were reverted in children who received adequate treatment at nutritional rehabilitation centres and showed linear catch-up.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Children recovered from malnutrition exhibit normal insulin production and sensitivity
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Children recovered from malnutrition exhibit normal insulin production and sensitivity
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Children recovered from malnutrition exhibit normal insulin production and sensitivity
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Vinicius José Baccin Martins, fax +55 11 5576 4275, email vifisio@ecb.epm.br

References

Hide All
1Sedgh, G, Herrera, GM, Nestel, P, El Amin, A & Fawzi, WW (2000) Dietary vitamin A intake and nondietary factors are associated with reversal of stunting in children. J Nutr 130, 25202526.
2Golden, MHN (1994) Is complete catch-up possible for stunted malnourished children? Eur J Clin Nutr 48, Suppl., S58S71.
3Allen, LH & Gillespie, SR (2001) Improving child growth. In What Works? A Review of the Efficacy and Effectiveness of Nutrition Interventions. United Nations Administrative Committee on Coordinator/Sub-Committee on Nutrition (ACC/SCN) in collaboration with the Asian Development Bank, pp. 2341. Manila and Geneva: United Nations University Press.
4Moore, SE, Halsall, I, Howarth, D, Poskitt, EM & Prentice, AM (2001) Glucose, insulin and lipid metabolism in rural Gambians exposed to early malnutrition. Diabet Med 18, 646653.
5González-Barranco, J, Rios-Torres, JM, Castillo-Martinez, L, Lopez-Alvarenga, JC, Aguilar-Salinas, CA, Bouchard, C, Deprès, JP & Tremblay, A (2003) Effect of malnutrition during the first year of life on adult plasma insulin and glucose tolerance. Metabolism 52, 10051011.
6Sawaya, AL, Grillo, LP, Verreschi, I, Silva, AC & Roberts, SB (1998) Mild stunting is associated with higher susceptibility to the effects of high fat diets: studies in a shantytown population in São Paulo, Brazil. J Nutr 128, 415S420S.
7Martins, PA, Hoffman, DJ, Fernandes, MTB, Nascimento, CR, Roberts, SB, Sesso, R & Sawaya, AL (2004) Stunted children gain less lean body mass and more fat mass than their non-stunted counterparts: a prospective study. Br J Nutr 92, 819825.
8Martins, PA & Sawaya, AL (2006) Evidence for impaired insulin production and higher sensitivity in stunted children living in slums. Br J Nutr 95, 9961001.
9das Neves, J, Martins, PA, Sesso, R & Sawaya, AL (2006) Malnourished children treated in day-hospital or outpatient clinics exhibit linear catch-up growth and normal body composition. J Nutr 136, 648655.
10Lohman, TG (1988) Skinfolds and body density and their relation to body fatness: a review. Hum Biol 53, 181225.
11Centers for Disease Control (2000) CDC growth chartshttp://www.cdc.gov/growthcharts/(accessed October 2005).
12Tanner, JM (1962) The development of the reproductive system. In Growth at Adolescence, 2nd ed., pp. 28–39 [Tanner, JM, editor]. Oxford: Blackwell Scientific Publications.
13Word Health Organization (1995) Physical Status: The Use and Interpretation of Anthropometry. Infants and Children. Technical Report Series no. 854. Geneva: WHO.
14Wallace, TM, Levy, JC & Matthews, DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27, 14871495.
15Yokoyama, H, Emoto, M, Fujiwara, S, et al. (2004) Quantitative insulin sensitivity check index and the reciprocal index of the homeostasis model assessment are useful indexes of insulin resistance in type 2 diabetic patients with wide range of fasting plasma glucose. J Clin Endocrinol Metab 89, 14811484.
16Bonora, E, Targher, G, Alberiche, M, Bonadonna, RC, Saggiani, F, Zenere, MB, Monauni, T & Muggeo, M (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensivity. Diabetes Care 23, 5763.
17Gungor, N, Saad, R, Janosky, J & Arslanian, S (2004) Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Pediatr 144, 4755.
18Federal University of São Paulo School of Medicine (1995) Programa de Apoio à Nutrição – NutWin (Programme for Nutrition Support; in Portuguese)http://www.unifesp.br/dis/produtos/nutwin/index.htm.
19Núcleo de Estudos e Pesquisas em Alimentação (2004) TACO. Tabela Brasileira de Composição de Alimentos (Brazilian Food Composition Table)http//:www.unicamp.br/nepa/taco.
20Wartelow, JC (1992) Endocrine changes in severe PEM. In Protein Energy Malnutrition, 1st ed., pp. 112125. London: Edward Arnold.
21Monteiro, CA & Benício, MHD (1981) Epidemiologia da desnutrição protéico calórica (Epidemiology of protein calorie malnutrition). In Desnutrição Intra-uterina e Pós-natal, 1st ed., pp. 120130 [Nóbrega, FJ, editor]. São Paulo: Panamed Editorial LTDA.
22Instituto Brasileiro de Geografia e Estatística (2004) Pesquisa de Orçamentos Familiares – Analíse da Disponibilidade Domiciliar de Alimentos e do Estado Nutricional no Brasil. Rio de Janeiro: IBGE.
23Kabir, I, Rahman, MM, Haider, R, Mazumder, RN, Khaled, MA & Mahalabanis, D (1998) Increased height gain of children fed a high-protein diet during convalescence from shigellosis: a six-month follow-up study. J Nutr 128, 16881691.
24Weisstaub, GS & Araya, QM (2003) Recuperación nutricional: un desafío pendiente (Nutritional recovery: a pending challenge). Rev Méd Chile 131, 213219.
25Soliman, AT, Hassan, AW, Aref, MK, Hintz, AR, Rosenfeld, RG & Rogol, AD (1986) Serum insulin-like growth fators I and II concentrations and growth hormone and insulin responses to arginine infusion in children with protein-energy malnutrition before and after nutritional rehabilitation. Pediatr Res 20, 11221130.
26Martín, MA, Fernández, E, Pascual-Leone, AM, Escrivá, F & Alvarez, C (2004) Protein calorie restriction has opposite effects on glucose metabolism and insulin gene expression in fetal and adult rat endocrine pancreas. Am J Physiol Endocrinol Metab 286, E542E550.
27Soto, N, Bazaes, RA, Peña, V, Salazar, T, Ávila, A, Iñiguez, G, Ong, KK, Dunger, DB & Mericq, V (2003) Insulin sensivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. J Clin Endocrinol Metab 88, 36453650.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed