Skip to main content Accessibility help
×
Home

Changes in plasma fatty acid composition after intake of a standardised breakfast in prepubertal obese children

  • M. Gil-Campos (a1), E. Larqué (a2), M. C. Ramírez-Tortosa (a3), J. Linde (a3), I. Villada (a3), R. Cañete (a1) and A. Gil (a3)...

Abstract

Obese patients typically show a pattern of dyslipidaemia and changes in plasma fatty acid composition reflecting abnormalities in lipoprotein metabolism and dietary habits. Animals and obese adults have been widely studied; however, contradictory results have been published in children. The objective was to assess changes in plasma fatty acid composition in total plasma lipids and plasma lipid fractions in obese prepubertal children compared with those of normal weight and to evaluate changes in postprandial plasma fatty acids during a 3 h period after intake of a standardised breakfast. The study was a case–control study with thirty-four obese and twenty normal-weight prepubertal children (Tanner 1). Anthropometric and metabolic variables and fatty acid concentrations were measured in plasma and its fractions. Liquid chromatography was used to separate lipid fractions and GLC to quantify fatty acids. Plasma total fatty acids (TFA), SFA, MUFA and PUFA concentrations were higher in obese than in control children. Except for 18 : 0, 18 : 3n-3, 20 : 4n-6 and n-3 PUFA, all fatty acids in TAG were also elevated in the obese group. Fatty acids 16 : 1n-7, 18 : 0, 18 : 1n-9, 20 : 2n-6, TFA and MUFA significantly decreased between the 2nd and 3rd hour in normal-weight v. obese children. The concentration of 16 : 1n-7 was positively and the proportion of 20 : 4n-6 inversely associated with a significant increase in risk of obesity. Obese prepubertal children show an altered plasma fatty acid profile and concentrations, mainly related to the TAG fatty acid profile, with a lower clearance of fatty acids v. normal-weight prepubertal children.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in plasma fatty acid composition after intake of a standardised breakfast in prepubertal obese children
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changes in plasma fatty acid composition after intake of a standardised breakfast in prepubertal obese children
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changes in plasma fatty acid composition after intake of a standardised breakfast in prepubertal obese children
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Angel Gil, fax +34 958 248960, email agil@ugr.es

References

Hide All
1 Denke, MA (2001) Connections between obesity and dyslipidaemia. Curr Opin Lipidol 12, 625628.
2 Wajchenberg, BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21, 697738.
3 Valle, M, Gascón, F, Martos, R, Ruz, FJ, Bermudo, F, Morales, R & Cañete, R (2002) Metabolic cardiovascular syndrome in obese prepubertal children: the role of high fasting insulin levels. Metabolism 51, 423428.
4 Weiss, R, Dziura, J, Burgert, TS, et al. (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350, 23622374.
5 Rossner, S, Walldius, G & Bjorvell, H (1989) Fatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. Int J Obes 13, 603612.
6 Phinney, SD, Tang, AB, Thurmond, DC, Nakamura, MT & Stern, JS (1993) Abnormal polyunsaturated lipid metabolism in the obese Zucker rat, with partial metabolic correction by γ-linolenic acid administration. Metabolism 42, 11271140.
7 Garaulet, M, Pérez-Llamas, F, Pérez- Ayala, M, Martínez, P, Sánchez de Medina, F, Tébar, FJ & Zamora, S (2001) Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr 74, 585591.
8 Vessby, B (2003) Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol 14, 1519.
9 Tremblay, AJ, Despres, JP, Piche, ME, Nadeau, A, Bergeron, J, Almeras, N, Tremblay, A & Lemieux, S (2004) Associations between the fatty acid content of triglyceride, visceral adipose tissue accumulation, and components of the insulin resistance syndrome. Metabolism 53, 310317.
10 Agostoni, C, Riva, E, Bellu, R, Vincenzo, SS, Grazia, BM & Giovannini, M (1994) Relationships between the fatty acid status and insulinemic indexes in obese children. Prostaglandins Leukot Essent Fatty Acids 51, 317321.
11 Scaglioni, S, Verduci, E, Salvioni, M, Bruzzese, MG, Radaelli, G, Zetterstrom, R, Riva, E & Agostoni, C (2006) Plasma long-chain fatty acids and the degree of obesity in Italian children. Acta Paediatr 95, 964969.
12 Decsi, T, Molnár, D & Koletzko, B (1996) Long-chain polyunsaturated fatty acids in plasma lipids of obese children. Lipids 31, 305311.
13 Decsi, T, Molnar, D & Koletzko, B (1998) The effect of under- and overnutrition on essential fatty acid metabolism in childhood. Eur J Clin Nutr 52, 541548.
14 Decsi, T, Csabi, G, Torok, K, Erhardt, E, Minda, H, Burus, I, Molnar, S & Molnar, D (2000) Polyunsaturated fatty acids in plasma lipids of obese children with and without metabolic cardiovascular syndrome. Lipids 35, 11791184.
15 Klein-Platat, C, Drai, J, Oujaa, M, Schlienger, JL & Simon, C (2005) Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents. Am J Clin Nutr 82, 11781184.
16 Larque, E, Gil-Campos, M, Ramirez-Tortosa, MC, Linde, J, Canete, R & Gil, A (2006) Postprandial response of trans fatty acids in prepubertal obese children. Int J Obes 30, 14881493.
17 Haslam, DW & James, WP (2005) Obesity. Lancet 366, 11971209.
18 Speiser, PW, Rudolf, MC, Anhalt, H, et al. (2005) Childhood obesity. J Clin Endocrinol Metab 90, 18711887.
19 Cruz, ML, Shaibi, GQ, Weigensberg, MJ, Spruijt-Metz, D, Ball, GD & Goran, MI (2005) Pediatric obesity and insulin resistance: chronic disease risk and implications for treatment and prevention beyond body weight modification. Annu Rev Nutr 25, 435468.
20 Tanner, JM (1962) Growth at Adolescence: with a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity, 2nd ed. Oxford, UK: Blackwell Scientific.
21 Hernández, M, Castellet, J, Narvaiza, JL, Rincón, JM, Ruiz, E, Sánchez, E, Sobradillo, B & Zurimendi, A (2002) Curvas y Tablas de Crecimiento. Instituto de Investigación sobre Crecimiento y Desarrollo. Fundación Faustino Orbegozo. Madrid: Ergón Press.
22 Hernández, M (2002) El patrón de crecimiento humano y su evaluación (The pattern of human growth and its evaluation). In Tratado de Endocrinología Pediátrica, 3rd ed., pp.253262 [Pombo, M, editor]. Madrid: McGraw-Hill Interamericana Press.
23 Martínez-Victoria, E & Mañas, M (2002) Alimentación y Salud. Nutritional Software. Instituto de Nutrición y Tecnología de los Alimentos. Asde, Valencia: Universidad de Granada.
24 Matthews, DR, Hosker, JP, Rudenski, AS, Naylor, BA, Treacher, DF & Turner, RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
25 Katz, A, Nambi, SS, Mather, K, Baron, AD, Follmann, DA, Sullivan, G & Quon, MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85, 24022410.
26 Larqué, E, Demmelmair, H, Berger, B, Hasbargen, U & Koletzko, B (2003) In vivo investigation of the placental transfer of 13C-labeled fatty acids in humans. J Lipid Res 44, 4955.
27 Kolarovic, L & Fournier, NC (1986) A comparison of extraction methods for the isolation of phospholipids from biological sources. J Ann Biochem 156, 244250.
28 Agren, JJ, Julkunen, A & Penttila, I (1992) Rapid separation of serum lipids for fatty acid analysis by a single aminopropyl column. J Lipid Res 33, 18711876.
29 Lepage, G & Roy, CC (1986) Direct transesterification of all classes of lipids in one-step reaction. J Lipid Res 27, 114120.
30 Ramírez, M, Gallardo, EM, Souto, AS, Weissheimer, C & Gil, A (2001) Plasma fatty-acid composition and antioxidant capacity in low-birth weight infants fed formula enriched with n-6 and n-3 long-chain polyunsaturated fatty acids from purified phospholipids. Clin Nutr 20, 6976.
31 Amate, L, Gil, A & Ramirez, M (2001) Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions. J Nutr 131, 12501255.
32 Cabré, E, Periago, JL, Abad-Lacruz, A, Gil, A, González-Huix, F, Sánchez-Medina, F & Gassull, MA (1988) Polyunsaturated fatty acid deficiency in liver cirrhosis: its relation to associated protein-energy malnutrition (Preliminary report). Am J Gastroenterol 83, 712717.
33 Esteve, M, Ramírez, M, Fernández-Bañares, F, et al. (1992) Plasma polyunsaturated fatty acid pattern in active inflammatory bowel disease. Gut 33, 13651369.
34 Reaven, G (1998) Role of insulin resistance in human disease. Diabetes 37, 15951607.
35 Reaven, GM (2005) Why syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab 1, 913.
36 Ramirez-Tortosa, MC, Suarez, A, Gomez, MC, Mir, A, Ros, E, Mataix, J & Gil, A (1999) Effect of extra-virgin olive oil and fish-oil supplementation on plasma lipids and susceptibility of low-density lipoprotein to oxidative alteration in free-living Spanish male patients with peripheral vascular disease. Clin Nutr 18, 167174.
37 Phinney, SD, Davis, PG, Johnson, SB & Holman, RT (1991) Obesity and weight loss alter serum polyunsaturated lipids in humans. Am J Clin Nutr 53, 831838.
38 Kunesova, M, Hainer, V, Tvrzicka, E, Phinney, SD, Stich, V, Parizkova, J, Zak, A & Stunkard, AJ (2002) Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids 37, 2732.
39 Phinney, SD (2005) Fatty acids, inflammation and metabolic syndrome. Am J Clin Nutr 82, 11511152.
40 Hu, CC, Qing, K & Chen, Y (2004) Diet-induced changes in stearoyl-CoA desaturase 1 expression in obesity-prone and -resistant mice. Obes Res 12, 12641270.
41 Sampath, H & Ntambi, JM (2006) Stearoyl-coenzyme A desaturase 1, sterol regulatory element binding protein-1c and peroxisome proliferator-activated receptor-α: independent and interactive roles in the regulation of lipid metabolism. Curr Opin Clin Nutr Metab Care 9, 8488.
42 Aldamiz-Echevarria, L, Prieto, JA, Andarde, F, Elorz, J, Sanjurjo, P & Rodriguez-Soriano, J (2007) Arachidonic acid content in adipose tissue is associated with insulin resistance in healthy children. J Pediat Gastroenterol Nutr 44, 7783.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed