Skip to main content Accessibility help
×
Home

Changes in fatty acid concentrations in tissues of African catfish, Clarias gariepinus Burchell, as a consequence of dietary carnitine, fat and lysine supplementation

  • R. O. A Ozório, J. L. A Uktoseja (a1), E. A. Huisman (a1) and J. A. J Verreth (a1)

Abstract

A study was undertaken to examine the effect of different dietary carnitine (200 and 1000 mg/kg diet) and fat (90 and 190 g/kg diet) supplementation on growth and fatty acid concentrations of fish fed either with a low- (13 g/kg) or a high-lysine (21 g/kg) diet. African catfish (22·7 g/fish), Clarias gariepinus Burchell, juveniles were stocked (sixteen aquaria, twenty-five fish per aquarium) and fed for a maximum of 74 d. Dietary lysine had a clear effect on growth performance and feed conversion ratios, but dietary carnitine supplements had no effect. High-carnitine supplements increased total carnitine content (P<0·0004) and reduced tissue free carnitine: acyl-carnitine ratio (P<0·05) compared with low-carnitine supplements. High-fat supplements decreased liver carnitine concentrations. Clear effects on liver fatty acid concentrations were observed in high-carnitine-fed fish compared with low-carnitine-fed fish. The primary liver fatty acids affected were 18:2n-6 (linoleic acid), 20:5n-3 (eicosapentanoic acid) and 22:6n-3 (docosahexanoic acid). The whole-body fatty acid balance suggested that 20:5n-3 disappeared (apparently by β-oxidation) more readily than 18:2n-6 and/or 22:6n-3. From 774 mg 20:5n-3 eaten by high-lysine–high-fat–low-carnitine fish, 58 % was not assimilated into body tissues. High-carnitine-fed fish showed an increase in 20:5n-3 oxidation by 7 % compared with low-carnitine fish. Although dietary carnitine did not improve body growth, these results support the hypothesis that carnitine can enhance the mobilisation of long-chain fatty acids towards oxidation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in fatty acid concentrations in tissues of African catfish, Clarias gariepinus Burchell, as a consequence of dietary carnitine, fat and lysine supplementation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changes in fatty acid concentrations in tissues of African catfish, Clarias gariepinus Burchell, as a consequence of dietary carnitine, fat and lysine supplementation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changes in fatty acid concentrations in tissues of African catfish, Clarias gariepinus Burchell, as a consequence of dietary carnitine, fat and lysine supplementation
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Rodrigo Ozório, fax +31 317 483937, email Rodrigo_Ozorio@hotmail.com

References

Hide All
Bamji, MS (1984) Nutritional and health implications of lysine carnitine relationship. World Review of Nutrition and Dietetics 44, 185211.
Becker, K, Schreiber, S, Angoni, C & Blum, R (1999) Growth performance and feed utilization response of Oreochromis niloticusOreochromis aureusL-carnitine measured over a full fattening cycle under commercial conditions. Aquaculture 174, 313322.
Bilinski, E & Jonas, REE (1970) Effects of coenzyme A and carnitine on fatty acid oxidation by rainbow trout mitochondria. Canadian Journal of Fisheries and Aquatic Science 27, 857864.
Brafield, AE (1985) Laboratory studies of energy budget Fish Energetics: New Perspectives 257281 [Taylor, P and Calow, P, editors]. London, UK:Croom Helm.
Brooks, DE & McIntosh, JE (1975) Turnover of carnitine by rat tissues. Biochemical Journal 148, 439445.
Broquist, HP (1997) Memories of microbes and metabolism. Annual Review of Nutrition 17, 118.
Cederblad, G & Lindstedt, S (1976) Metabolism of labeled carnitine in the rat. Archives of Biochemistry Biophysics 175, 173180.
Chatzifotis, S, Takeushi, T & Seikai, T (1995) The effect of dietary carnitine on growth performance and lipid composition in Red Sea bream fingerlings. Fisheries Science 61, 10041008.
Chatzifotis, S, Takeushi, T & Seikai, T (1996) The effect of dietary carnitine supplementation on growth of Red Sea bream (Pagrus major) fingerlings at two levels of dietary lysine. Aquaculture 147, 235248.
Christiansen, RZ & Bremer, J (1988) Acetylation of Tris-(hydroxymethyl) amino-methane (Tris) and Tris derivatives by carnitine acetyltransferase. FEBS Letters 86, 99102.
Conceição, LEC, Ozório, ROA, Suurd, EA & Verreth, JAJ (1998 a) Amino acid profiles and amino acid utilization in larval African catfish (Clarias gariepinus): effects of ontogeny and temperature. Fish Physiology and Biochemistry 19, 4357.
Conceição, LEC, Verreth, JAJ, Verstegen, MWA & Huisman, EA (1998 b) preliminary model for dynamic simulation of growth in fish larvae: application to the African catfish (Clarias gariepinus) and turbot (Scophthalmus maximus). Aquaculture 163, 215235.
Cunnane, SC & Yang, J (1995) Zinc deficiency impairs whole-body accumulation of polyunsaturates and increases the utilization of [1-14 C]-linoleate for de novo lipid synthesis in pregnant rats. Canadian Journal Physiology Pharmacology 73, 12461252.
Davis, AT, Kruggel, EM & Randall, S (1993) Excess of dietary lysine increases skeletal muscle and plasma trimethyllysine in rats. Journal of Nutrition 6, 11091116.
Erfanullah, AKJ (1998) Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture 161, 159168.
Gaylord, TG & Gatlin, DM (2000) Dietary lipid level but not L-carnitine affects growth performance of hybrid striped bass (Morone chrysops×M. saxatilis). Aquaculture 190, 237246.
Gropp, JM, Schumacher, A & Schweigert, FJ, (1994) Recent research in vitamin nutrition with special emphasis to vitamin A, β-carotene and L-carnitine. In Proceedings of the Meeting of the Arkansas Nutrition Conference, pp. 124134. Fayetteville, AR: Arkansas Polutry Federation.
Harpaz, S, Becker, K & Blum, R (1999) The effect of dietary L-carnitine supplementation on cold tolerance and growth of the ornamental cichlid fish (Pelvicachromis pulcher) – preliminary results. Journal of Thermal Biology 24, 5762.
Hecht, T, Oellermann, L & Verheust, L (1996) Perspective on clariid catfish culture in Africa. In The Biology and Culture of Catfishes [Legendre, M and Proteau, JP, editors]. Aquatic Living Resources 9, 197206.
Heo, K, Odle, J, Han, IK, Cho, W, Seo, S, van Heugten, E & Pilkington, DH (2000) Dietary L-carnitine improves nitrogen utilization in growing pigs fed low energy, fat-containing diets. Journal of Nutrition 130, 18091814.
Higgs, DA, Dosanjh, BS, Uin, LM, Himick, BA & Eales, JG (1992) Effects of dietary-lipid and carbohydrate-levels and chronic 3,5,3′-triiodo-L-thyronine treatment of growth, appetite, food and protein-utilization and body composition of immature rainbow-trout, Oncorhynchus-mykiss, at low-temperature. Aquaculture 105, 175190.
Huisman, EA & Richter, CJJ (1987) Reproduction, growth, health control and aquaculture potential of the African catfish Clarias gariepinus (Burchell 1822). Aquaculture 63, 114.
Infante, JP & Huszagh, VA (2000) Secondary carnitine deficiency and impaired docosahexaenoic (22:6n-3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and beta-oxidation. FEBS Letters 469, 15.
International Organization for Standardization ISO 5483 (1979) Animal Feeding Stuffs – Determination of Nitrogen Content and Calculation of Crude Protein Content, Geneva:ISO.
International Organization for Standardization ISO 5484(1978) Animal Feeding Stuffs – Determination of Crude Ash, Geneva:ISO.
International Organization for Standardization ISO 6496(1983) Animal Feeding Stuffs – Determination of Moisture Content, Geneva:ISO.
Janssens, GPJ, Buyse, J, Seynaeve, M, Decuypere, E & De Wilde, R (1998) The reduction of heat production in exercising pigeons after L-carnitine supplementation. Poultry Science 77, 578584.
Jayaprakas, V & Sambhu, C (1996) Growth response of white prawn, Penaeus indicus, to dietary L-carnitine. Asian Fisheries Science 9, 209219.
Ji, H, Bradley, TM & Tremblay, GC (1996) Atlantic salmon (Salmo salar) fed L-carnitine exhibit altered intermediary metabolism and reduced tissue lipid, but no change in growth rate. Journal of Nutrition 126, 19371950.
Kraemer, WJ & Volek, JS (2000) L-Carnitine supplementation for the athlete: a new perspective. Annals of Nutrition and Metabolism 44, 8889.
Krajcovicova-Kudlackova, M, Simoncic, R, Bederova, A, Babinska, K & Beder, I (2000) Correlation of carnitine levels to methionine and lysine intake. Physiological Research 49, 399401.
Lepage, G & Roy, CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid Research 25, 13911396.
Li, MH & Robinson, EH (1998) Effects of supplemental lysine and methionine in low protein diets on weight gain and body composition of young channel catfish Ictalurus punctatus. Aquaculture 163, 297307.
Munsiri, P & Lovell, RT (1993) Comparison of satiate and restricted feeding of Channel catfish with diets of varying protein quantity in production ponds. Journal of the World Aquaculture Society 24, 459465.
Odle, J (1997) New insights into the utilization of medium-chain triglycerides by the neonate: observations from a piglet model. Journal of Nutrition 127, 10611067.
Rabie, MH & Szilagyi, M (1998) Effects of L-carnitine supplementation of diets differing in energy levels on performance, abdominal fat content, and yield and composition of edible meat of broilers. British Journal of Nutrition 80, 391400.
Rebouche, CJ & Seim, H (1998) Carnitine metabolism and its regulation in microorganisms and mammals. Annual Review of Nutrition 18, 3961.
Robinson, EH, Wilson, RP & Poe, WE (1980) Re-evaluation of the lysine requirement and lysine utilization by fingerling channel catfish. Journal of Nutrition 110, 23132316.
Rodehutscord, M (1995) Effects of supplemental dietary L-carnitine on the growth and body composition of rainbow trout (Oncorhynchus mykiss) fed high-fat diets. Journal of Animal Physiology and Animal Nutrition 73, 276279.
Sachan, DL & Mynatt, RL (1993) Wheat gluten-based diet retarded ethanol metabolism by altering alcohol-dehydrogenase and not carnitine status in adult rats. Journal of the American College of Nutrition 12, 170175.
Sachan, DS & Hongu, N (2000) Increases in VO2 max and metabolic markers of fat oxidation by caffeine, carnitine, and choline supplementation in rats. Journal of Nutritional Biochemistry 11, 521526.
Souffleux, G (1994) Benefit of using Rossovet carnitine for horses in preparation for amateur carriage-racing. Pratique Vétérinaire Équine 26, 241248.
Torreele, E, van der Sluiszen, A & Verreth, J (1993) The effect of dietary L-carnitine on the growth performance in fingerlings of the African catfish (Clarias gariepinus) in relation to dietary lipid. British Journal of Nutrition 69, 289299.
Uys, W (1989) Aspects of the nutritional physiology and dietary requirements of juvenile and adult sharptooth catfish, Clarias gariepinus (Pisces: Clariidae) PhD Thesis Rhodes University.
Van Kempen, TATG & Odle, J (1995) Carnitine affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrum-deprived piglets: In vivo analysis of mechanisms involved based on CoA- and carnitine-ester profiles. Journal of Nutrition 125, 238250.
Wynn, JP & Ratledge, C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology-UK 146, 23252331.

Keywords

Changes in fatty acid concentrations in tissues of African catfish, Clarias gariepinus Burchell, as a consequence of dietary carnitine, fat and lysine supplementation

  • R. O. A Ozório, J. L. A Uktoseja (a1), E. A. Huisman (a1) and J. A. J Verreth (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed