Skip to main content Accessibility help
×
Home

Broiler chicken body weights, feed intakes, plasma lipid and small-intestinal bile acid concentrations in response to feeding of chitosan and pectin

  • A. Razdan (a1), D. Pettersson (a1) and J. Pettersson (a1)

Abstract

One-day-old broiler chickens were fed on a control diet based on maize and maize starch or diets containing 30g/kg of 89 % deacetylated chitin (chitosan) or low-methoxyl (34 % degree of esterification) pectin. Feeding of the chitosan diet to chickens significantly reduced body weights and feed intakes compared with animals fed on control or pectin diets on days 5 and 11 of the experiment. On day 12, significant reductions in total plasma cholesterol and HDL-cholesterol concentrations were observed among birds fed on the chitosan but not the pectin diet in relation to control-fed animals. A concomitant increase in the plasma HDL-cholesterol:total cholesterol ratio was observed among chitosan-fed chickens. The generally reduced concentrations of primary and total bile acids in the duodenum of birds fed on the fibre-containing diets on day 13 may have been an indication of a delay in the production and/or secretion of bile. Viscosity of the three broiler-chicken diets was measured after suspension in water, acidification and finally neutralization of the suspensions, in an attempt to simulate the effect of changes in pH and dilution of diets occurring in the gizzard and small intestine of chickens. Viscosity of the chitosan diet was significantly elevated after acidification and significantly reduced at neutralization in comparison with the control and pectin-containingdiets suggesting that the hypolipidaemic influence of chitosan observed in the present study may be due to interruption of enterohepatic bile acid circulation rather than increased viscosity in the small intestine of chickens. The low viscosity of the pectin diet in vitro together with the absence of a hypocholesterolaemic effect of this diet when fed in vivo precludes any conclusion regarding the hypocholesterolaemic mechanism of pectin observed in earlier studies.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Broiler chicken body weights, feed intakes, plasma lipid and small-intestinal bile acid concentrations in response to feeding of chitosan and pectin
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Broiler chicken body weights, feed intakes, plasma lipid and small-intestinal bile acid concentrations in response to feeding of chitosan and pectin
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Broiler chicken body weights, feed intakes, plasma lipid and small-intestinal bile acid concentrations in response to feeding of chitosan and pectin
      Available formats
      ×

Copyright

References

Hide All
Åman, P. & Hesselman, K. (1984). Analysis of starch and other main constituents of cereal grains. Swedish Journal of Agricultural Research 14, 135139.
Anderson, J. W. (1987). Dietary fiber, lipids and atherosclerosis. American Journal of Cardiology 60, 17G22G.
Anon. (1971). Determination of crude oils and fats. Official Journal of the European Communities L297, 995997.
Association of Official Analytical Chemists (1984). Official Methods of Analysis, 14th ed. Washington, DC: Association of Official Analytical Chemists.
Bosaeus, I., Carlsson, N. G. & Andersson, H. (1986). Low-fat versus medium fat enteral diets. Scandinavian Journal of Gastroenterology 21, 891896.
Cameron-Smith, D., Collier, G. R. & O'Dea, K. (1994). Effect of soluble dietary fibre on the viscosity of gastrointestinal contents and the acute glycaemic response in the rat. British Journal of Nutrition 71, 563571.
Cassidy, M. M. & Calvert, R. J. (1993). Effects of dietary fiber on intestinal absorption of lipids. In Dietary Fiber in Human Nutrition, pp. 153162 [Spiller, G. A., editor]. Boca Raton: CRC Press.
Chang, M. L. W. & Johnson, M. A. (1985). Effect of pectin, type of fat, and growing rate on lipid metabolism in rats. Nutrition Research 5, 749757.
Deuchi, K., Kanauchi, O., Imasoto, Y. & Kobayashi, E. (1994). Decreasing effect of chitosan on the apparent fat digestibility by rats fed on a high-fat diet. Bioscience, Biotechnology and Biochemistry 58, 16131616.
Furda, I. (1990). Interaction of dietary fiber with lipids - mechanistic theories and their limitations. In New Developments in Dietary Fiber, pp. 6782 [Furda, I. and Brine, C. J.M, editors]. New York: Plenum Press.
Ikeda, I., Sugano, M., Yoshida, K., Iwamoto, Y. & Hatano, K. (1993). Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentrations in rats. Journal of Agricultural and Food Sciences 41, 431435.
Ikegami, S., Tsuchihashi, F., Harada, H., Tsuchihashi, N., Nishide, E. & Innami, S. (1990). Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. Journal of Nutrition 120, 353360.
Kanauchi, O., Deuchi, K., Imasoto, Y. & Kobayashi, E. (1994). Increasing effect of chitosan and ascorbic acid mixture on faecal dietary fat excretion. Bioscience, Biotechnology and Biochemistry 58, 16171620.
Kishimoto, Y., Wakabayashi, S. & Takeda, H. (1995). Hypocholesterolemic effect of dietary fiber: relation to intestinal fermentation and bile acid excretion. Journal of Nutritional Science and Vitaminology 41, 151161.
Kritchevsky, D. & Story, J. A. (1993). Influence of dietary fiber on cholesterol metabolism in experimental animals. In Dietary Fiber in Human Nutrition, pp. 163178 [Spiller, G. A., editor]. Boca Raton: CRC Press.
Maezaki, Y., Tsuki, K., Nakagawa, Y., Kawai, Y., Akimoto, M., Tsugita, T., Takekawa, W., Terada, A., Hara, H. & Mitsuoka, T. (1993). Hypocholesterolemic effect of chitosan in adult males. Bioscience, Biotechnology and Biochemistry 57, 14391444.
Oakenfull, D. G. & Sidhu, G. S. (1984). Effects of pectins on intestinal absorption of glucose and cholate in the rat. Nutrition Reports International 30, 12691278.
Pettersson, D. & Åman, P. (1992). Production responses and serum lipid concentrations of broiler chickens fed diets based on oat bran and extracted oat bran with and without enzyme supplementation. Journal of the Science of Food and Agriculture 58, 569576.
Petterson, D. & Razdan, A. (1993). Effects of increasing levels of sugar-beet pulp in broiler chicken diets on nutrient digestion and serum lipids. British Journal of Nutrition 70, 127137.
Razdan, A. & Pettersson, D. (1994). Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. British Journal of Nutrition 72, 277288.
Sandhu, K. S., El Samahi, M. M., Mena, I., Dooley, C. P. & Valenzuela, J. E. (1987). Effect of pectin on gastric emptying and gastroduodenal motility in normal subjects. Gastroenterology 92, 486492.
Shaw, R. & Elliot, W. H. (1978). Bile acids. LV. 2,2 Dimethoxypropane: an esterifying agent preferred to diazomethane for chenodeoxycholic acid. Journal of Lipid Research 19, 783787.
Statistical Analysis Systems Institute Inc. (1985). SAS User's Guide: Statistics. Cary, NC: SAS Institute Inc.
Theander, O., Åman, P., Westerlund, E., Andersson, R. & Pettersson, D. (1995). Total dietary fiber determined as neutral sugar residues, and klason lignin (the Uppsala method): collaborative study. Journal of AOAC International 78, 10301044.
Trowell, H. (1972). Ischemic heart disease and dietary fiber. American Journal of Clinical Nutrition 25, 926930.
Welch, R. W., Peterson, D. M. & Schramka, B. S. (1986). Hypocholesterolemic, gastrointestinal and associated responses to oat bran in chicks. Nutrition Research 6, 957966.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed