Skip to main content Accessibility help
×
Home

Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative

  • Masoud Isanejad (a1), Andrea Z. LaCroix (a2), Cynthia A. Thomson (a3), Lesley Tinker (a4), Joseph C. Larson (a4), Qibin Qi (a5), Lihong Qi (a6), Rhonda M. Cooper-DeHoff (a7), Lawrence S. Phillips (a8) (a9), Ross L. Prentice (a4) and Jeannette M. Beasley (a10)...

Abstract

Knowledge regarding association of dietary branched-chain amino acid (BCAA) and type 2 diabetes (T2D), and the contribution of BCAA from meat to the risk of T2D are scarce. We evaluated associations between dietary BCAA intake, meat intake, interaction between BCAA and meat intake and risk of T2D. Data analyses were performed for 74 155 participants aged 50−79 years at baseline from the Women’s Health Initiative for up to 15 years of follow-up. We excluded from analysis participants with treated T2D, and factors potentially associated with T2D or missing covariate data. The BCAA and total meat intake was estimated from FFQ. Using Cox proportional hazards models, we assessed the relationship between BCAA intake, meat intake, and T2D, adjusting for confounders. A 20 % increment in total BCAA intake (g/d and %energy) was associated with a 7 % higher risk for T2D (hazard ratio (HR) 1·07; 95 % CI 1·05, 1·09). For total meat intake, a 20 % increment was associated with a 4 % higher risk of T2D (HR 1·04; 95 % CI 1·03, 1·05). The associations between BCAA intake and T2D were attenuated but remained significant after adjustment for total meat intake. These relations did not materially differ with or without adjustment for BMI. Our results suggest that dietary BCAA and meat intake are positively associated with T2D among postmenopausal women. The association of BCAA and diabetes risk was attenuated but remained positive after adjustment for meat intake suggesting that BCAA intake in part but not in full is contributing to the association of meat with T2D risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative
      Available formats
      ×

Copyright

Corresponding author

* Corresponding authors: J. M. Beasley, fax +1 212 263 8788, email Jeannette.Beasley@nyumc.org; M. Isanejad, email masoud.isanejad@uef.fi

References

Hide All
1. Adeva, MM, Calviño, J, Souto, G, et al. (2012) Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 43, 171181.
2. van Nielen, M, Feskens, EJ, Mensink, M, et al. (2014) Dietary protein intake and incidence of type 2 diabetes in Europe: the EPIC-InterAct Case-Cohort Study. Diabetes Care 37, 18541862.
3. Ericson, U, Sonestedt, E, Gullberg, B, et al. (2013) High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br J Nutr 109, 11431153.
4. Feskens, EJ, Sluik, D & van Woudenbergh, GJ (2013) Meat consumption, diabetes, and its complications. Curr Diab Rep 13, 298306.
5. Sluijs, I, Beulens, JW, van der, ADL, et al. (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33, 4348.
6. Tinker, LF, Sarto, GE, Howard, BV, et al. (2011) Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am J Clin Nutr 94, 16001606.
7. Wang, ET, de Koning, L & Kanaya, AM (2010) Higher protein intake is associated with diabetes risk in South Asian Indians: the Metabolic Syndrome and Atherosclerosis in South Asians Living in America (MASALA) study. J Am Coll Nutr 29, 130135.
8. Malik, VS, Li, Y, Tobias, DK, et al. (2016) Dietary protein intake and risk of type 2 diabetes in US men and women. Am J Epidemiol 183, 715728.
9. Pan, A, Sun, Q, Bernstein, AM, et al. (2011) Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 94, 10881096.
10. Katsanos, CS, Kobayashi, H, Sheffield-Moore, M, et al. (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291, 381.
11. Nagata, C, Nakamura, K, Wada, K, et al. (2013) Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am J Epidemiol 178, 12261232.
12. Batch, BC, Shah, SH, Newgard, CB, et al. (2013) Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 62, 961969.
13. Huffman, KM, Shah, SH, Stevens, RD, et al. (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32, 16781683.
14. Newgard, CB, An, J, Bain, JR, et al. (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9, 311326.
15. Langer, RD, White, E, Lewis, CE, et al. (2003) The Women’s Health Initiative Observational Study: baseline characteristics of participants and reliability of baseline measures. Ann Epidemiol 13, S121.
16. Ritenbaugh, C, Patterson, RE, Chlebowski, RT, et al. (2003) The Women’s Health Initiative Dietary Modification trial: overview and baseline characteristics of participants. Ann Epidemiol 13, S97.
17. The Women’s Health Initiative Study (1998) Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials 19, 61109.
18. Patterson, RE, Kristal, AR, Tinker, LF, et al. (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9, 178187.
19. Anonymous US Department of Agriculture & Agricultural Research Service (2013) USDA National Nutrient Database for Standard Reference, Release 26. https://ndb.nal.usda.gov/ndb/search/list (accessed March 2017).
20. Zheng, Y, Li, Y, Qi, Q, et al. (2016) Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol 45, 14821492.
21. Wurtz, P, Soininen, P, Kangas, AJ, et al. (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36, 648655.
22. Wang, TJ, Larson, MG, Vasan, RS, et al. (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17, 448453.
23. Newgard, CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15, 606614.
24. Tremblay, F, Lavigne, C, Jacques, H, et al. (2007) Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 27, 293310.
25. Krebs, M, Krssak, M, Bernroider, E, et al. (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51, 599605.
26. Aregbesola, A, Virtanen, JK, Voutilainen, S, et al. (2015) Serum ferritin and glucose homeostasis: change in the association by glycaemic state. Diabetes Metab Res Rev 31, 507514.
27. Jiang, R, Ma, J, Ascherio, A, et al. (2004) Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: a prospective cohort study. Am J Clin Nutr 79, 7075.
28. Margolis, KL, Lihong, Q, Brzyski, R, et al. (2008) Validity of diabetes self-reports in the Women’s Health Initiative: comparison with medication inventories and fasting glucose measurements. Clin Trials 5, 240247.

Keywords

Type Description Title
WORD
Supplementary materials

Isanejad supplementary material
Table S1

 Word (21 KB)
21 KB
WORD
Supplementary materials

Isanejad supplementary material
Table S2

 Word (25 KB)
25 KB
WORD
Supplementary materials

Isanejad supplementary material
Table S3

 Word (21 KB)
21 KB
WORD
Supplementary materials

Isanejad supplementary material
Table S4

 Word (22 KB)
22 KB
WORD
Supplementary materials

Isanejad supplementary material
Table S5

 Word (25 KB)
25 KB
WORD
Supplementary materials

Isanejad supplementary material
Table S6

 Word (26 KB)
26 KB
WORD
Supplementary materials

Isanejad supplementary material
Table S7

 Word (22 KB)
22 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed