Skip to main content Accessibility help
×
Home

Bone mass in Chinese premenarcheal girls: the roles of body composition, calcium intake and physical activity

  • Kun Zhu (a1), Xueqin Du (a1), Heather Greenfield (a1), Qian Zhang (a2), Guansheng Ma (a2), Xiaoqi Hu (a2) and David R. Fraser (a1)...

Abstract

The association of growth and anthropometric characteristics and lifestyle factors with bone mass and second metacarpal radiogrammetry parameters was evaluated in 373 healthy Chinese premenarcheal girls aged 9–11 years. Bone mineral content (BMC) and density (BMD) and bone area (BA) of distal forearm, proximal forearm and total body, bone mineral-free lean (BMFL) mass and fat mass were measured by dual-energy X-ray absorptiometry. Metacarpal bone periosteal and medullary diameters were measured. Dietary intakes were assessed by 7d food record and physical activity (PA) by questionnaire. BMFL and fat mass together explained 6·3 and 51·6% of the variation in total body BMC and BMD, respectively. BMFL mass contributed to a substantial proportion of the variation in forearm BMC and BMD and periosteal diameter (10·4–41·0%). The corresponding BA explained 14·8–80·4% of the variation in BMC. Other minor but significant predictors of total body bone mass were Ca intake, height, age and PA score (BMD only), and of forearm bone mass were PA score, bone age, height and fat mass. Nevertheless, after adjusting for bone and body size and for age or bone age, subjects with Ca intake above the median (417mg/d) had 1·8% greater total body BMC (P<0·001), and subjects with PA scores above the median had 2·4–2·5% greater distal and proximal forearm BMC (P<0·05) than those below. Vitamin D intake negatively associated with medullary diameter (partial R2 1·7%). The results indicate that premenarcheal girls should be encouraged to optimise nutrition and Ca intake and exercise regularly to achieve maximum peak bone mass.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bone mass in Chinese premenarcheal girls: the roles of body composition, calcium intake and physical activity
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bone mass in Chinese premenarcheal girls: the roles of body composition, calcium intake and physical activity
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bone mass in Chinese premenarcheal girls: the roles of body composition, calcium intake and physical activity
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Kun Zhu, fax +61 2 9351 3957, email, kathyz@vetsci.usyd.edu.au

References

Hide All
Afghani, A, Xie, B, Wiswell, RA, Gong, J, Li, Y & Johnson, CA (2003) Bone mass of Asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc 35, 720729.
Ala-Houhala, M, Koskinen, T, Koskinen, M & Visakorpi, JK (1988) Double blind study on the need for vitamin D supplementation in prepubertal children. Acta Paediatr Scand 77, 8993.
Andon, MB, Lloyd, T & Matkovic, V (1994) Supplementation trials with calcium citrate malate: evidence in favor of increasing the calcium RDA during childhood and adolescence. J Nutr 124, 1412S1417S.
Bass, S, Delmas, PD, Pearce, G, Hendrich, E, Tabensky, A & Seeman, E (1999) The differing tempo of growth in bone size, mass and density in girls is region-specific. J Clin Invest 104, 795804.
Bass, S, Pearce, G, Bradney, M, Hendrich, E, Delmas, PD, Harding, A & Seeman, E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13, 500507.
Bass, SL (2000) The prepubertal years, a unique opportune stage of growth when the skeleton is most responsive to exercise?. Sports Med 30, 7378.
Cadogan, J, Eastell, R, Jones, N & Barker, ME (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ 315, 12551260.
Chan, GM, Hoffman, K & McMurry, M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126, 551556.
Cheng, JCY, Maffulli, N, Leung, SSSF, Lee, WTK, Lau, JTF & Chan, KM (1999) Axial and peripheral bone mineral acquisition: a 3-year longitudinal study in Chinese adolescents. Eur J Pediatr 158, 506512.
Chinese Nutrition Society (2000) Chinese DRIs Beijing Chinese Light Industry Publishing House
Chinese Student Fitness and Health Research Group (1995) Chinese Student Fitness and Health Investigation Report Jilin Jilin Science and Technology Publishing House
Cooper, C, Campion, G & Melton, LJ (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2, 285289.
Du, X, Greenfield, H, Fraser, DR, Ge, K, Trube, A & Wang, Y (2001) Vitamin D deficiency and associated factors in adolescent girls in Beijing. Am J Clin Nutr 74, 494500.
Du, X, Greenfield, H, Fraser, DR, Ge, K, Zheng, W, Huang, L & Liu, Z (2003) Low body weight and its association with bone health and pubertal maturation in Chinese girls. Eur J Clin Nutr 57, 693700.
Du, X, Zhu, K, Trube, A, Zhang, Q, Ma, G, Hu, X, Fraser, DR & Greenfield, H (2004) School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr 92, 159168.
Du, XQ, Greenfield, H, Fraser, DR, Ge, KY, Liu, ZH & He, W (2002) Milk consumption and bone mineral content in Chinese adolescent girls. Bone 30, 521528.
Garn, S (1970) The Earlier Gain and Later Loss of Cortical Bone, in Nutritional Perspective, pp. 3120Springfield, IL: Charles C Thomas Publishers.
Hayes, WC & Gerhart, TN (1985) Biomechanics of bone: applications for assessment of bone strength. In Bone and Mineral Research, vol. 3. 259294 [Peck, WA editors]. Amsterdam, The Netherlands: Elsevier Science Publishers.
He, W, Du, X & Greenfield, H (1997) CAVD, A Survey System Using Epi Info (software) Beijing Chinese Academy of Preventive Medicine
Heaney, RP (2003) Bone mineral content, not bone mineral density, is the correct bone measure for growth studies. Am J Clin Nutr 78, 350351.
Holland, B, Welch, AA, Unwin, ID, Buss, DH, Paul, AA & Southgate, DAT (1991) McCance and Widdowson's the Composition of Foods 5th ed. London Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food
Ilich, JZ, Skugor, M, Hangartner, T, Baoshe, A & Matkovic, V (1998) Relation of nutrition, body composition and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr 17, 136147.
Institute of Nutrition and Food Hygiene (1991) Food Composition Tables Beijing People's Medical Publishing House.
Jones, G & Dwyer, T (1998) Bone mass in prepubertal children: gender differences and the role of physical activity and sunlight exposure. J Clin Endocrinol Metab 83, 42744279.
Kannus, P, Haapasalo, H, Sankelo, M, Sievanen, H, Pasanen, M, Heinonen, A, Oja, P & Vuori, I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123, 2731.
Khan, KM, Bennell, KL, Hopper, JL, Flicker, L, Nowson, CA, Sherwin, AJ, Crichton, KJ, Harcourt, PR & Wark, JD (1998) Self-reported ballet classes undertaken at age 10–12 years and hip bone mineral density in later life. Osteoporos Int 8, 165173.
Kleinbaum, DG, Kupper, LL, Muller, KE & Nizam, A (1998) Applied Regression Analysis and other Multivariable Methods, pp. 237248. Pacific Grove, CA: Duxbury Press.
Lehtonen-Veromaa, MKM, Möttönen, TT, Nuotio, IO, Irjala, KMA, Leino, AE & Viikari, JSA (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 76, 14461453.
Liu, A, Ma, G, Pan, H, Du, W, Zhang, Q & Hu, X (2003) The reliability and validity study of an 1-year physical activity questionnaire for pupils. Chin J School Doctor 17, 47.
Lloyd, T, Martel, JK, Rollings, N, Andon, MB, Kulin, H, Demers, LM, Eggli, DF, Kieselhorst, K & Chinchilli, VM (1996) The effect of calcium supplementation and Tanner stage on bone density, content and area in teenage women. Osteoporos Int 6, 276283.
Mason, RS & Posen, S (1977) Some problems associated with assay of 25-hydroxycalciferol in human serum. J Clin Chem 23, 806810.
Ministry of Health and National Education Committee (1993) Chinese Reference Standards for Anthropometry Assessment of School Children Beijing Ministry of Health and National Education Committee
National Sports Committee (1992) Assessment of Development of Metacarpals, Phalanges and Carpals of Chinese People: National Standards of People's Republic of China Beijing National Sports Committee
Parsons, TJ, Prentice, A, Smith, EA, Cole, TJ & Compston, JE (1996) Bone mineral mass consolidation in young British adults. J Bone Miner Res 11, 264274.
Prentice, A, Parsons, TJ & Cole, TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60, 837842.
Scerpella, TA, Davenport, M, Morganti, CM, Kanaley, JA & Johnson, LM (2003) Dose related association of impact activity and bone mineral density in pre-pubertal girls. Calc Tissue Int 72, 2431.
Seeman, E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 12, 509521.
Seeman, E (2003) Pathogenesis of osteoporosis. J Appl Physiol 95, 21422151.
Slemenda, CW (1995) Editorial: body composition and skeletal density – mechanical loading or something more?. J Clin Endocrinol Metab 80, 17611763.
Slemenda, CW, Reister, TK, Hui, SL, Miller, JZ, Christian, JC & Johnston, CC (1994) Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J. Pediatr 125, 201207.
Tanner, JM (1962) Growth at Adolescence, 2nd ed. 3036, Oxford: Blackwell Scientific Publications.
Telama, R, Viikari, J & Valimaki, I (1985) Atherosclerosis precursors in Finnish children and adolescents. X. Leisure-time physical activity. Acta Paediatr Scand 318 Suppl.169180.
Tudor-Locke, C, Ainsworth, BE, Adair, LS, Du, S & Popkin, BA (2003) Physical activity and inactivity in Chinese school-aged youth: the China Health and Nutrition Survey. Int J Obesity 27, 10931099.
Xu, L, Lu, A, Zhao, X, Chen, X & Cummings, SR (1996) Very low rates of hip fracture in Beijing, People's Republic of China. The Beijing osteoporosis project. Am J Epidemiol 144, 901907.
Young, D, Hopper, JL, Nowson, CA, Green, RM, Sherwin, AJ, Kaymakci, B, Smid, M, Guest, CS, Larkins, RG & Wark, JD (1995) Determinants of bone mass in 10- to 26-year-old females: a twin study. J Bone Miner Res 10, 558567.

Keywords

Bone mass in Chinese premenarcheal girls: the roles of body composition, calcium intake and physical activity

  • Kun Zhu (a1), Xueqin Du (a1), Heather Greenfield (a1), Qian Zhang (a2), Guansheng Ma (a2), Xiaoqi Hu (a2) and David R. Fraser (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed