Skip to main content Accessibility help
×
Home

Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children

  • Mubarek Abera (a1) (a2), Markos Tesfaye (a3), Bitiya Admassu (a2) (a4), Charlotte Hanlon (a5) (a6), Christian Ritz (a2), Rasmus Wibaek (a2) (a7), Kim F. Michaelsen (a2), Henrik Friis (a2), Jonathan C. Wells (a8), Gregers S. Andersen (a7), Tsinuel Girma (a9) and Pernille Kæstel (a2)...

Abstract

Early nutrition and growth have been found to be important early exposures for later development. Studies of crude growth in terms of weight and length/height, however, cannot elucidate how body composition (BC) might mediate associations between nutrition and later development. In this study, we aimed to examine the relation between fat mass (FM) or fat-free mass (FFM) tissues at birth and their accretion during early infancy, and later developmental progression. In a birth cohort from Ethiopia, 455 children who have BC measurement at birth and 416 who have standardised rate of BC growth during infancy were followed up for outcome variable, and were included in the statistical analysis. The study sample was restricted to mothers living in Jimma town who gave birth to a term baby with a birth weight ≥1500 g and no evident congenital anomalies. The relationship between the exposure and outcome variables was examined using linear-mixed regression model. The finding revealed that FFM at birth was positively associated with global developmental progression from 1 to 5 years (β=1·75; 95 % CI 0·11, 3·39) and from 4 to 5 years (β=1·34; 95 % CI 0·23, 2·44) in the adjusted model. Furthermore, the rate of postnatal FFM tissue accretion was positively associated with development at 1 year of age (β=0·50; 95 % CI 0·01, 0·99). Neither fetal nor postnatal FM showed a significant association. In conclusion, fetal, rather than postnatal, FFM tissue accretion was associated with developmental progression. Intervention studies are needed to assess whether nutrition interventions increasing FFM also increase cognitive development.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: M. Abera, email mubarek.abera@ju.edu.et; abmubarek@gmail.com

References

Hide All
1. Tucker-Drob, EM, Briley, DA & Harden, KP (2013) Genetic and environmental influences on cognition across development and context. Curr Dir Psychol Sci 22, 349355.
2. Walker, SP, Wachs, TD, Grantham-McGregor, S, et al. (2011) Inequality in early childhood: risk and protective factors for early child development. Lancet 378, 13251338.
3. Eriksen, H-LF, Kesmodel, US, Underbjerg, M, et al. (2013) Predictors of intelligence at the age of 5: family, pregnancy and birth characteristics, postnatal influences, and postnatal growth. PLOS ONE 8, e79200.
4. Black, RE, Victora, CG, Walker, SP, et al. (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427451.
5. Barker, DJ (2001) The malnourished baby and infant. Br Med Bull 60, 6988.
6. Tam, CS & Ravussin, E (2012) Energy balance: an overview with emphasis on children. Pediatr Blood Cancer 58, 154158.
7. Levitt, P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143, 4 Suppl., S35S45.
8. Tau, GZ & Peterson, BS (2010) Normal development of brain circuits. Neuropsychopharmacology 35, 1, 147168.
9. Vasung, L, Lepage, C, Radoš, M, et al. (2016) Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Front Neuroanat 10, 11.
10. Ziegler, EE, O’Donnell, AM, Nelson, SE, et al. (1976) Body composition of the reference fetus. Growth 40, 329341.
11. Kuzawa, CW (1998) Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol Suppl. 27, 177209.
12. Drozdz, D, Kwinta, P, Korohoda, P, et al. (2009) Correlation between fat mass and blood pressure in healthy children. Pediatr Nephrol 24, 17351740.
13. Wells, JCK & Fewtrell, MS (2008) Is body composition important for paediatricians? Arch Dis Child 93, 168172.
14. Admassu, B, Wells, JCK, Girma, T, et al. (2017) Body composition at birth and height at 2 years: a prospective cohort study among children in Jimma, Ethiopia. Pediatr Res 82, 209214.
15. Abera, M, Tesfaye, M, Girma, T, et al. (2017) Relation of body composition at birth with child development at two years of age: a prospective cohort study among Ethiopian children. Eur J Clin Nutr 71, 14111417.
16. Hadley, C, Lindstrom, D, Tessema, F, et al. (2008) Gender bias in the food insecurity experience of Ethiopian adolescents. Soc Sci Med 66, 427438.
17. United Nations International Children’s Emergency Fund (2009) Food Security and Vulnerability in Selected Towns of Oromiya Region: WFP-Ethiopia Vulnerability Assessment and Mapping (VAM). Report from WFP. Oromia Region, Addis Ababa: UNICEF.
18. Endalew, B, Muche, M, Tadesse, S, et al. (2015) Assessment of food security status of selected livelihood groups in Jimma town. J Biol Chem Res 32, 700710.
19. Andersen, GS, Girma, T, Wells, JCK, et al. (2011) Fat and fat-free mass at birth: air displacement plethysmography measurements on 350 Ethiopian newborns. Pediatr Res 70, 501506.
20. Andersen, GS, Girma, T, Wells, JC, et al. (2013) Body composition from birth to 6 mo of age in Ethiopian infants: reference data obtained by air-displacement plethysmography. Am J Clin Nutr 98, 885894.
21. Vyas, S & Kumaranayake, L (2006) Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan 21, 459468.
22. Frankenburg, WK, Dodds, J, Archer, P, et al. (1992) The Denver II: a major revision and restandardization of the Denver Developmental Screening Test. Pediatrics 89, 9197.
23. Abessa, TG, Worku, BN, Kibebew, MW, et al. (2016) Adaptation and standardization of a Western tool for assessing child development in non-Western low-income context. BMC Public Health 16, 652.
24. Hadley, C, Tegegn, A, Tessema, F, et al. (2008) Parental symptoms of common mental disorders and children’s social, motor, and language development in sub-Saharan Africa. Ann Hum Biol 35, 259275.
25. Chi, Z, Zhang, J, Tokunaga, A, et al. (2012) Botch promotes neurogenesis by antagonizing notch. Dev Cell 22, 707720.
26. Georgieff, MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85, Suppl., 614S620SS.
27. Boulanger, LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64, 93109.
28. Rutherford, MA (editor) (2003) MRI of the Neonatal Brain. Edinburgh: W. B. Saunders.
29. Harvey, D, Prince, J, Bunton, J, et al. (1982) Abilities of children who were small-for-gestational-age babies. Pediatrics 69, 296300.
30. Walker, SP, Thame, MM, Chang, SM, et al. (2007) Association of growth in utero with cognitive function at age 6-8 years. Early Hum Dev 83, 355360.
31. Butte, NF, Hopkinson, JM, Wong, WW, et al. (2000) Body composition during the first 2 years of life: an updated reference. Pediatr Res 47, 578585.
32. Gentier, I, D’Hondt, E, Shultz, S, et al. (2013) Fine and gross motor skills differ between healthy-weight and obese children. Res Dev Disabil 34, 40434051.
33. Raine, LB, Khan, NA, Drollette, ES, et al. (2017) Obesity, visceral adipose tissue, and cognitive function in childhood. J Pediatr 187, 134140.e3.
34. Roberts, D, Veneri, D, Decker, R, et al. (2012) Weight status and gross motor skill in kindergarten children. Pediatr Phys Ther 24, 353360.
35. Khan, NA, Baym, CL, Monti, JM, et al. (2015) Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children. J Pediatr 166, 302308.e1.
36. Wang, C, Chan, JSY, Ren, L, et al. (2016) Obesity reduces cognitive and motor functions across the lifespan. Neural Plast, (Epublication ahead of print version 23 August 2017) https://www.hindawi.com/journals/np/2016/2473081/.
37. Bartz, S, Mody, A, Hornik, C, et al. (2014) Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab 99, 21282137.
38. Toga, AW, Thompson, PM & Sowell, ER (2006) Mapping brain maturation. Trends Neurosci 29, 148159.
39. Celikkiran, S, Bozkurt, H & Coskun, M (2015) Denver developmental test findings and their relationship with sociodemographic variables in a large community sample of 0-4-year-old children. Noro Psikiyatr Ars 52, 180184.
40. Bouchard, C, Trudeau, N, Sutton, A, et al. (2009) Gender differences in language development in French Canadian children between 8 and 30 months of age. Appl Psycholinguist 30, 685.
41. Ulker, A (2016) Body size at birth, physical development and cognitive outcomes in early childhood: evidence from the Longitudinal Survey of Australian Children. Educ Econ 24, 142166.
42. Bartels, M, van Beijsterveldt, CEM & Boomsma, DI (2009) Breastfeeding, maternal education and cognitive function: a prospective study in twins. Behav Genet 39, 616622.
43. von Stumm, S & Plomin, R (2015) Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence 48, 3036.
44. Glascoe, FP, Byrne, KE, Ashford, LG, et al. (1992) Accuracy of the Denver-II in developmental screening. Pediatrics 89, 12211225.
45. Hemachandra, AH & Klebanoff, MA (2006) Use of serial ultrasound to identify periods of fetal growth restriction in relation to neonatal anthropometry. Am J Hum Biol 18, 791797.
46. Wade, M, Browne, DT, Madigan, S, et al. (2014) Normal birth weight variation and children’s neuropsychological functioning: links between language, executive functioning, and theory of mind. J Int Neuropsychol Soc 20, 909919.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed