Skip to main content Accessibility help
×
Home

The biological effects and digestible energy value of a sugar-beet fibre preparation in the rat

  • I. T. Johnson (a1), G. Livesey (a1), J. M. Gee (a1), J. C. Brown (a1) and G. M. Wortley (a1)...

Abstract

A sugar-beet fibre preparation (SBF) was incorporated into a semi-synthetic rat diet at a level of 100 g/kg. The material caused no feed aversion, and gain of live weight was unimpaired. SBF appeared to be slightly more fermentable than wheat bran and only marginally less effective as a faecal bulking agent when compared with equalized intakes of non-starch polysaccharide. SBF did not stimulate mucosal cell turnover in the small intestine. Some enlargement of the caecum was observed in animals given SBF, but it was no greater than that of animals given wheat bran. Animals given SBF had a lower serum cholesterol concentration than both the fibre-free controls and those given wheat bran. This hypocholesterolaemic effect was less than that of guar gum however. The partial digestibility of energy for SBF was 0.64, and its partial digestible energy value was 11.3 kJ (2.7 keal)/g. The partial digestibility of energy for non-starch polysaccharide in SBF was estimated to be 0.53 and its partial digestible energy value was 9.1 kJ (2.2 kcal)/g. This value was not significantly different from that expected for unavailable carbohydrate in mixed human diets.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The biological effects and digestible energy value of a sugar-beet fibre preparation in the rat
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The biological effects and digestible energy value of a sugar-beet fibre preparation in the rat
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The biological effects and digestible energy value of a sugar-beet fibre preparation in the rat
      Available formats
      ×

Copyright

References

Hide All
Anderson, J. W. & Bridges, S. R. (1981). Plant fibre metabolites alter hepatic glucose and lipid metabolism. Diabetes 30, 133A.
Anderson, J. W., Story, L., Sieling, B., Chen, W. L., Petro, M. S. & Story, J. (1984). Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. American Journal of Clinical Nutrition 40, 11461155.
Clarke, R. M. (1970). Mucosal architecture and epithelial cell production in the small intestine of the albino rat. Journal of Anatomy 107, 519529.
Davies, I. R., Johnson, I. T. & Livesey, G. (1987). Food energy values of dietary fibre components and decreased deposition of body fat. International Journal of Obesity 11, Suppl. 1, 101105.
Elsenhans, B., Blume, R. & Caspary, W. F. (1981). Long-term feeding of unavailable carbohydrate gelling agents. Influence of dietary concentration and microbiological degradation on adaptive responses in the rat. American Journal of Clinical Nutrition 34, 18371848.
Englyst, H. N. & Cummings, J. H. (1984). Simplified method for the measurement of total non-starch polysaccharides by gas–liquid chromatography of constituent sugars as alditol acetates. Analyst 109, 937942.
Findlay, J. M., Mitchell, W. D., Smith, A. N., Anderson, A. J. B. & Eastwood, M. A. (1974). Effects of unprocessed wheat bran on colonic function in normal subjects and in diverticular disease. Lancet i, 146149.
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. U., Metz, G. L. & Alberti, K. G. M. M. (1978). Dietary fibres, fibre analogues and glucose tolerance: importance of viscosity. British Medical Journal i, 13921394.
Johnson, I. T. & Gee, J. M. (1986). Gastrointestinal adaption in response to soluble non-available polysaccharides in the rat. British Journal of Nutrition 55, 497505.
Johnson, I. T., Gee, J. M. & Brown, J. C. (1988). Plasma enteroglucagon and small bowel cytokinetics in rats fed soluble nonstarch polysaccharides. American Journal of Clinical Nutrition 47, 10041009.
Judd, P. A. & Truswell, A. S. (1982). Comparison of the effects of high- and low-methoxy pectins on blood and faecal lipids in man. British Journal of Nutrition 48, 451458.
Kleiber, M. (1975). The Fire of Life: An Introduction to Animal Energetics, pp. 259271. Huntington, New York: Robert E. Kriegar Publishing Co.
Livesey, G. (1988). Energy from foods – old values and new perspectives. British Nutrition Foundation Bulletin 13, 928.
Livesey, G. (1989 a). Energy and complex carbohydrates: workshop report. In Nutrient Availability: Chemical and Biological Aspects, pp. 385387 [Southgate, D. A. J., Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: Royal Society of Chemistry.
Livesey, G. (1989 b). Procedure for calculating the digestible and metabolisable energy values of food components making a small contribution to dietary intake. Journal of the Science of Food and Agriculture 48, 475481.
Livesey, G. (1990). The energy values of unavailable carbohydrates and diets: an enquiry and analysis. American Journal of Clinical Nutrition (In the Press).
Livesey, G., Davies, I. R., Brown, J. C., Faulks, R. M. & Southon, S. (1990). Energy balance and energy value of α-amylase (EC 3.2. 1. 1)-resistant maize and pea (Pisum sativum) starches in the rat. British Journal of Nutrition 63, 467480.
Morgan, L. M., Tredger, J. A., Williams, C. A. & Marks, V. (1988). Effects of sugar beet fibre on glucose tolerance and circulating cholesterol levels. Proceedings of the Nutrition Society 47, 185A.
Nyman, M. & Asp, N.-G. (1982). Fermentation of dietary fibre components in the rat intestinal tract. British Journal of Nutrition 47, 357366.
Riecken, E. O. & Gregor, M. (1985). Glucagon and small bowel mucosa. Scandinavian Journal of Gastroenterology 20, Suppl. 112, 3040.
Selvendran, R. R., Stevens, B. J. H. & DuPont, M. S. (1987). Dietary fibre: chemistry, analysis and properties. Advances in Food Research 31, 117209.
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). Caloric conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition 24, 517535.
Trowell, H., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R., Gassull, M. A. & Jenkins, D. J. A. (1976). Dietary fibre redefined. Lancet i, 1967.
Van Soest, P. J. (1984). Some physical characteristics of dietary fibres and their influence on the microbial ecology of the human colon. Proceedings of the Nutrition Society 43, 2533.
Wyatt, G. M., Horn, N., Gee, J. M. & Johnson, I. T. (1988). Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides. British Journal of Nutrition 60, 197207.

Keywords

The biological effects and digestible energy value of a sugar-beet fibre preparation in the rat

  • I. T. Johnson (a1), G. Livesey (a1), J. M. Gee (a1), J. C. Brown (a1) and G. M. Wortley (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed