Skip to main content Accessibility help
×
Home

Bioavailability of vitamin B12 in cows' milk

  • J. Jacques Matte (a1), Frédéric Guay (a2) and Christiane L. Girard (a1)

Abstract

The natural source of vitamin B12 in human diets comes from animal products. For example, one glass (250 ml) of milk provides approximately 50 % of the RDA (2·4 μg/d). It was hypothesised that the provision of vitamin B12 from milk is more efficiently absorbed than the synthetic form used in vitamin supplements. Pigs (n 10) were used as a model for intestinal absorption of vitamin B12 in humans to compare the net fluxes of vitamin B12 across the portal-drained viscera (PDV; an indicator of intestinal absorption) after ingestion of meals complemented with conventional and vitamin B12-enriched (via injections to cows) milk (raw, pasteurised or microfiltrated) or with equivalent amounts of cyanocobalamin, the synthetic form used in supplements or unsupplemented. Net flux of vitamin B12 across PDV after the ingestion of milk was positive, though not influenced by milk enrichment (P>0·3) or technological processes (P = 0·8) and was greater than after ingestion of equivalent amounts of cyanocobalamin (cyanocobalamin v. all milk, P ≤ 0·003). In fact, net fluxes of this vitamin were not different from 0 after either cyanocobalamin or the meal devoid of vitamin B12 (unsupplemented v. cyanocobalamin, P = 0·7). The cumulative PDV fluxes during the 24 h following ingestion of meals complemented with milk varied from 5·5 to 6·8 μg. These values correspond to an efficiency of intestinal absorption of vitamin B12 from milk varying between 8 and 10 %. Therefore, vitamin B12, which is abundant in cows' milk, is also substantially more available than the most commonly used synthetic form of this vitamin.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bioavailability of vitamin B12 in cows' milk
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bioavailability of vitamin B12 in cows' milk
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bioavailability of vitamin B12 in cows' milk
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: J. J. Matte, email Jacques.Matte@agr.gc.ca

References

Hide All
1 Martens, J-H, Barg, H, Warren, MJ, et al. (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58, 275285.
2 Combs, GF Jr (1998) The Vitamins: Fundamental Aspects in Nutrition and Health, 2nd ed. San Diego, CA: Academic Press.
3 Selhub, J, Morris, MS & Jacques, PF (2007) In vitamin B12 deficiency, higher serum folate is associated with increased total homocysteine and methylmalonic acid concentrations. Proc Natl Acad Sci U S A 104, 1999520000.
4 Selhub, J, Morris, MS, Jacques, PF, et al. (2009) Folate-vitamin B-12 interaction in relation to cognitive impairment, anemia, and biochemical indicators of vitamin B-12 deficiency. Am J Clin Nutr 89, 702S706S.
5 Tucker, KL, Rich, S, Rosenberg, IH, et al. (2000) Plasma vitamin B-12 concentrations relate to intake source in Framingham offspring study. Am J Clin Nutr 71, 514522.
6 Vogiatzoglou, A, Smith, AD, Nurk, E, et al. (2009) Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: the Hordaland Homocysteine Study. Am J Clin Nutr 89, 10781087.
7 Bor, MV, von Castel-Roberts, KM, Kauwell, GPA, et al. (2010) Daily intake of 4 to 7 μg dietary vitamin B-12 is associated with steady concentrations of vitamin B-12-related biomarkers in a healthy young population. Am J Clin Nutr 91, 571577.
8 Miller, DR, Specker, BL, Ho, ML, et al. (1991) Vitamin B12 status in a macrobiotic community. Am J Clin Nutr 53, 524529.
9 United States Department of Agriculture (USDA) (2004) National Nutrient Database for Standard, Reference, Release 16. Composition of Foods, Raw, Processed, Prepared. U.S. Department of Agriculture Agricultural Research Service, Beltsville, Maryland 20705, USA. www.nal.usda.gov/fnic/foodcomp/Data/SR16/sr16_doc.pdf.
10 Canadian Food Inspection Agency (CFIA) (2010) Guide to Food Labelling and Advertising. Chapter 7. 7.25 Vitamin and Mineral Nutrient Claims. http://www.inspection.gc.ca/english/fssa/labeti/guide/ch7be.shtml#tab7-15.
11 Health Canada (2006) Food and Nutrition, Dietary Reference Intakes, Tables, ISBN: 0-662-41134-X, Cat. No.: H44-87/2005E-HTML. http://www.hc-sc.gc.ca/fn-an/nutrition/reference/table/index-eng.php.
12 Preynat, A, Lapierre, H, Thivierge, MC, et al. (2009) Influence of methionine supply on the responses of lactational performance of dairy cows to supplementary folic acid and vitamin B12. J Dairy Sci 92, 16851695.
13 Herbert, V (1988) Vitamin B-12: plant sources, requirements, and assay. Am J Clin Nutr 48, 852858.
14 Zittoun, J (1996) Cobalamins: an update of fundamental and clinical data. Hématologie 2, 119129.
15 Farquharson, J & Adams, JF (1976) The forms of vitamin B12 in foods. Br J Nutr 36, 127136.
16 Fie, M, Zee, JA & Amiot, J (1994) Séparation et quantification des isomères de la vitamine B12 dans le lait et certains produits laitiers par chromatographie liquide haute performance et par radio-essai. Sciences des aliments 14, 763775.
17 Girard, CL & Matte, JJ (2005) Effects of intramuscular injections of vitamin B12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. J Dairy Sci 88, 671676.
18 Trouvé, E, Maubois, JL, Piot, M, et al. (1991) Rétention de différentes espèces microbiennes lors de l'épuration du lait par microfiltration en flux tangentiel. Lait 71, 113.
19 Preynat, A, Lapierre, H, Thivierge, MC, et al. (2009) Effects of supplements of folic acid, vitamin B12 and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J Dairy Sci 92, 677689.
20 NRC (1998) Nutrient Requirements of Swine, 10th ed. Washington, DC: National Academy Press.
21 Hooda, S, Matte, JJ, Wilkinson, CW, et al. (2009) Technical note: an improved surgical model for the long-term studies of kinetics and quantification of nutrient absorption in swine. J Anim Sci 87, 20132019.
22 Canadian Council on Animal Care (1993) Guide to the Care and Use of Experimental Animals, vol. 1. Ottawa, ON, Canada: Canadian Council on Animal Care.
23 Agriculture Canada (1993) Recommended Code of Practice for Care and Handling of Pigs. Publication no. 1771E. Ottawa, ON, Canada: Agriculture Canada.
24 Manet, L (1969) Techniques usuelles de biologie clinique. In Hématologie, p. 39. Paris, France: Éditions médicales Flammarion.
25 AOAC (Association of Official Analytical Chemists) (1990) Official Methods of Analysis, 16th ed. Arlington, VA: AOAC Int.
26 Girard, CL, Lapierre, H, Desrochers, A, et al. (2001) Net flux of folates and vitamin B12 through the gastrointestinal tract and the liver of lactating dairy cows. Br J Nutr 86, 707715.
27 SAS Institute (2004) SAS/STAT User's Guide, vol. 1–7. Cary, NC: SAS Inst. Inc.
28 Guilloteau, P, Zabielski, R, Hammon, HM, et al. (2010) Nutritional programming of gastrointestinal tract development. Is pig a good model for man? Nutr Res Rev 23, 422.
29 Matte, JJ, Guay, F, Le Floc'h, N, et al. (2010) Bioavailability of dietary cyanocobalamin (vitamin B12) in growing pigs. J Anim Sci 88, 39363944.
30 Herbert, V (1987) Recommended dietary intakes (RDI) of vitamin B-12 in humans. Am J Clin Nutr 45, 671678.
31 Schneider, Z & Stroiński, A (1987) Comprehensive B12. Chemistry, Biochemistry, Nutrition, Ecology, Medicine. Berlin, Germany: Walter de Gruyter.
32 Gizis, E, Kim, YP, Brunner, JR, et al. (1965) Vitamin B12 content and binding capacity of cow's milk proteins. J Nutr 87, 349352.
33 Russell, RM, Baik, H & Kehayias, JJ (2001) Older men and women efficiently absorb vitamin B-12 from milk and fortified bread. J Nutr 131, 291293.
34 Cullen, RW & Oace, SM (1978) Methylmalonic acid and vitamin B12 excretion of rats consuming diets varying in cellulose and pectin. J Nutr 108, 640647.
35 Karlin, R, Hours, C, Vallier, C, et al. (1969) Sur la teneur en folates des laits de grand mélange. Effets de divers traitements thermiques sur les taux de folates, B12 et B6 de ces laits. Internationale Zeitschrift für Vitaminforschung 39, 359371.
36 Weissberg, H & Glass, GBJ (1966) Hydroxocobalamin. VI. Comparison of intestinal absorption in man of large doses of hydroxocobalamin and cyanocobalamin. Proc Soc Exp Biol Med 122, 2528.
37 Adams, JF, Ross, SK, Mervyn, L, et al. (1971) Absorption of cyanocobalamin, coenzyme B 12, methylcobalamin, and hydroxocobalamin at different dose levels. Scand J Gastroenterol 6, 249252.

Keywords

Related content

Powered by UNSILO

Bioavailability of vitamin B12 in cows' milk

  • J. Jacques Matte (a1), Frédéric Guay (a2) and Christiane L. Girard (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.