Skip to main content Accessibility help
×
Home

Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury

  • Honggang Wang (a1), Wei Zhang (a1), Lugen Zuo (a1), Weiming Zhu (a1), Bin Wang (a1), Qiurong Li (a1) and Jieshou Li (a1)...

Abstract

The aim of the present study was to determine the effect of peroral bifidobacteria on the intestinal microbiota, barrier function and bacterial translocation (BT) in a mouse model of ischaemia and reperfusion (I/R) injury. A total of twenty-four male BALB/c mice were randomly allocated into three groups: (1) sham-operated, (2) I/R and (3) I/R injury and bifidobacteria pretreatment (109 colony-forming units/d). Bifidobacteria were administered daily intragastrically for 2 weeks before induction of I/R. Subsequently, samples of caecal content, intestinal mucosa, ileal segments, blood, mesenteric lymph nodes (MLN) and distant organs (liver, spleen and kidney) were prepared for examination. In the I/R model, barrier dysfunction (caecal microbiota dysbiosis, disruption of tight junction (TJ), increased epithelial cell apoptosis, disruption of mucosa and multiple erosions) in the intestine was observed, associated with increased BT to extraintestinal sites. The ratio of BT to MLN and distant organs in mice exposed to I/R injury was 62·5 %, which was significantly higher than the sham-operated group. However, pretreatment of animals with bifidobacteria prevented I/R-induced BT, reduced pro-inflammatory cytokine release, the levels of endotoxin, intestinal epithelial cell apoptosis, disruption of TJ and increased the concentration of SCFA, resulting in recovered microbiota and mucosal integrity. Bifidobacteria may be beneficial in reducing BT in I/R injury of mice. Therefore, peroral administration of bifidobacteria is a potential strategy to prevent I/R-induced BT and intestinal barrier dysfunction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: W. Zhu, fax +86 25 84806839, email zhuwiming@126.com

References

Hide All
1Sonnenburg, JL, Angenent, LT, Gordon, JI, et al. (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine. Nat Immunol 5, 569573.
2Kelly, D, Conway, S, Aminov, R, et al. (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26, 326333.
3Hopkins, MJ & Macfarlane, GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51, 448454.
4Berg, RD & Owens, WE (1979) Inhibition of translocation of viable Escherichia coli from the gastrointestinal tract of mice by bacterial antagonism. Infect Immun 25, 820827.
5Wells, CL, Vande Westerlo, EM, Jechorek, RP, et al. (1996) Effect of hypoxia on enterocyte endocytosis of enteric bacteria. Crit Care Med 24, 985991.
6Kuzu, MA, Kale, IT, Col, C, et al. (1999) Obstructive jaundice promotes bacterial translocation in humans. Hepatogastroenterology 46, 21592164.
7Ruan, X, Shi, H, Xia, G, Xiao, Y, et al. (2007) Encapsulated bifidobacteria reduced bacterial translocation in rats following hemorrhagic shock and resuscitation. Nutrition 23, 754761.
8Peitzman, AB, Udekwu, AO, Ochoa, J, et al. (1991) Bacterial translocation in trauma patients. J Trauma 31, 10831086.
9Farhadi, A, Banan, A, Fields, J, et al. (2003) Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 18, 479497.
10Sun, Z, Wang, X, Deng, X, Borjesson, A, et al. (2000) Phagocytic and intestinal endothelial and epithelial barrier function during the early stage of small intestinal ischemia and reperfusion injury. Shock 13, 209216.
11Schoenberg, MH, Poch, B, Younes, M, et al. (1991) Involvement of neutrophils in postischaemic damage to the small intestine. Gut 32, 905912.
12Yamamoto, S, Tanabe, M, Wakabayashi, G, et al. (2001) The role of tumor necrosis factor-alpha and interleukin-1beta in ischemia–reperfusion injury of the rat small intestine. J Surg Res 99, 134141.
13Ishibashi, N & Yamazaki, S (2001) Probiotics and safety. Am J Clin Nutr 73, S465S470.
14Westerbeek, EA, van den Berg, A, Lafeber, HN, et al. (2006) The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin Nutr 25, 361368.
15Salminen, S, Bouley, C, Boutron-Ruault, MC, et al. (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80, Suppl. 1, S147S171.
16Harmsen, HJ, Wildeboer-Veloo, AC, Raangs, GC, et al. (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30, 6167.
17Saulnier, DM, Spinler, JK, Gibson, GR, et al. (2009) Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr Opin Biotechnol 20, 135141.
18Fukuda, S, Toh, H, Hase, K, et al. (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543547.
19Zhang, W, Zhu, W, Zhang, J, et al. (2008) Protective effects of glucagon-like peptide 2 on intestinal ischemia–reperfusion rats. Microsurgery 28, 285290.
20Salazar, N, Gueimonde, M, Hernandez-Barranco, AM, et al. (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74, 47374745.
21Chiu, CJ, McArdle, AH, Brown, R, et al. (1970) Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 101, 478483.
22Mazzon, E & Cuzzocrea, S (2006) Thalidomide treatment reduces the alteration of paracellular barrier function in mice ileum during experimental colitis. Shock 25, 515521.
23Dowdall, JF, Winter, DC, Bouchier-Hayes, DJ, et al. (2002) Inosine modulates gut barrier dysfunction and end organ damage in a model of ischemia–reperfusion injury. J Surg Res 108, 6168.
24Eror, AT, Stojadinovic, A, Starnes, BW, et al. (1999) Antiinflammatory effects of soluble complement receptor type 1 promote rapid recovery of ischemia/reperfusion injury in rat small intestine. Clin Immunol 90, 266275.
25Luyer, MD, Buurman, WA, Hadfoune, M, et al. (2005) Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect Immun 73, 36863692.
26Deitch, EA (2002) Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings. Surgery 131, 241244.
27Moore, FA, Moore, EE, Poggetti, RS, et al. (1992) Postinjury shock and early bacteremia. A lethal combination. Arch Surg 127, 893897, discussion 897–898.
28Stecher, B & Hardt, WD (2001) The role of microbiota in infectious disease. Trends Microbiol 16, 107114.
29Dalwai, F, Spratt, DA, Pratten, J, et al. (2006) Modeling shifts in microbial populations associated with health or disease. Appl Environ Microbiol 72, 36783684.
30Fujiwara, S, Hashiba, H, Hirota, T, et al. (1997) Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Appl Environ Microbiol 63, 506512.
31Wang, Z, Xiao, G, Yao, Y, et al. (2006) The role of bifidobacteria in gut barrier function after thermal injury in rats. J Trauma 61, 650657.
32Tedelind, S, Westberg, F, Kjerrulf, M, et al. (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13, 28262832.
33Kles, KA & Chang, EB (2006) Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology 130, Suppl. 1, S100S105.
34Maslowski, KM, Vieira, AT, Ng, A, et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 12821286.
35Florent, C, Flourie, B, Leblond, A, et al (1985) Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest 75, 608613.
36Pan, XD, Chen, FQ, Wu, TX, et al. (2009) Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J Zhejiang Univ Sci B 10, 258263.
37Wang, B, Huang, Q, Zhang, W, et al. (2011) Lactobacillus plantarum prevents bacterial translocation in rats following ischemia and reperfusion injury. Dig Dis Sci 56, 31873194.
38Grotz, MR, Deitch, EA, Ding, J, et al. (1999) Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg 229, 478486.
39Kurtel, H, Fujimoto, K, Zimmerman, BJ, et al. (1991) Ischemia–reperfusion-induced mucosal dysfunction: role of neutrophils. Am J Physiol 261, G490G496.
40Griffiths, EA, Duffy, LC, Schanbacher, FL, et al. (2004) In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci 49, 579589.
41Park, SY, Ji, GE, Ko, YT, et al. (1999) Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int J Food Microbiol 46, 231241.
42Guarner, F & Malagelada, JR (2006) Gut flora in health and disease. Lancet 361, 512519.
43Zhang, LL, Chen, X, Zheng, PY, et al. (2010) Oral Bifidobacterium modulates intestinal immune inflammation in mice with food allergy. J Gastroenterol Hepatol 25, 928934.
44Hebra, A, Hong, J, McGowan, KL, et al. (1994) Bacterial translocation in mesenteric ischemia–reperfusion injury: is dysfunctional motility the link? J Pediatr Surg 29, 280285, discussion 285–287.
45Schoenberg, MH & Beger, HG (1993) Reperfusion injury after intestinal ischemia. Crit Care Med 21, 13761386.
46Harhaj, NS & Antonetti, DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36, 12061237.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed