Skip to main content Accessibility help

Associations of breast milk adiponectin, leptin, insulin and ghrelin with maternal characteristics and early infant growth: a longitudinal study

  • Xinting Yu (a1) (a2) (a3), Shi Song Rong (a4), Xiujing Sun (a1), Guofang Ding (a1), Weilin Wan (a1), Liying Zou (a5), Shaowen Wu (a5), Ming Li (a2) and Danhua Wang (a1)...


Breast milk (BM) hormones have been hypothesised as a nutritional link between maternal and infant metabolic health. This study aimed to evaluate hormone concentrations in BM of women with and without gestational diabetes mellitus (GDM), and the relationship between maternal factors, BM hormones and infant growth. We studied ninety-six nulliparous women with (n 48) and without GDM and their exclusively breastfed term singletons. Women with GDM received dietary therapy or insulin injection for euglycaemia during pregnancy. Hormone concentrations in BM, maternal BMI and infant growth were longitudinally evaluated on postnatal days 3, 42 and 90. Mothers with GDM had decreased concentrations of adiponectin (Pcolostrum<0·001; Pmature-milk=0·009) and ghrelin (Pcolostrum=0·011; Pmature-milk<0·001) and increased concentration of insulin in BM (Pcolostrum=0·047; Pmature-milk=0·021). Maternal BMI was positively associated with adiponectin (β=0·06; 95 % CI 0·02, 0·1; P=0·001), leptin (β=0·16; 95 % CI 0·12, 0·2; P<0·001) and insulin concentrations (β=0·06; 95 % CI 0·02, 0·1; P<0·001), and inversely associated with ghrelin concentration in BM (β=–0·08; 95 % CI –0·1, –0·06; P<0·001). Among the four hormones, adiponectin was inversely associated with infant growth in both the GDM (βweight-for-height=–2·49; 95 % CI –3·83, –1·15; P<0·001; βhead-circumference=–0·39; 95 % CI –0·65, –0·13; P=0·003) and healthy groups (βweight-for-height=–1·42; 95 % CI –2·38, –0·46; P=0·003; βhead-circumference=–0·15; 95 % CI –0·27, –0·03; P=0·007). Maternal BMI and GDM are important determinants of BM hormone concentrations. Milk-borne adiponectin is determined by maternal metabolic status and plays an independent down-regulating role in early infant growth.


Corresponding author

*Corresponding authors: M. Li, fax +86 10 69155073, email; D. Wang, fax +86 10 69156271, email


Hide All
1. Correa, A, Bardenheier, B, Elixhauser, A, et al. (2015) Trends in prevalence of diabetes among delivery hospitalizations, United States, 1993–2009. Matern Child Health J 19, 635642.
2. World Health Organization (2017) Childhood Overweight and Obesity.
3. Catalano, PM, McIntyre, HD, Cruickshank, JK, et al. (2012) The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 35, 780786.
4. Logan, KM, Emsley, RJ, Jeffries, S, et al. (2016) Development of early adiposity in infants of mothers with gestational diabetes mellitus. Diabetes Care 39, 10451051.
5. Gillman, MW, Rifas-Shiman, S, Berkey, CS, et al. (2003) Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 111, e221e226.
6. Sellers, EA, Dean, HJ, Shafer, LA, et al. (2016) Exposure to gestational diabetes mellitus: impact on the development of early-onset type 2 diabetes in Canadian First Nation and Non-First Nation Offspring. Diabetes Care 39, 22402246.
7. Cripps, RL, Archer, ZA, Mercer, JG, et al. (2007) Early life programming of energy balance. Biochem Soc Trans 35, 12031204.
8. Armstrong, J & Reilly, JJ, Child Health Information Team (2002) Breastfeeding and lowering the risk of childhood obesity. Lancet 359, 20032004.
9. Owen, CG, Martin, RM, Whincup, PH, et al. (2006) Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr 84, 10431054.
10. Plagemann, A, Harder, T, Franke, K, et al. (2002) Long-term impact of neonatal breast-feeding on body weight and glucose tolerance in children of diabetic mothers. Diabetes Care 25, 1622.
11. Mayer-Davis, EJ, Rifas-Shiman, SL, Zhou, L, et al. (2006) Breast-feeding and risk for childhood obesity: does maternal diabetes or obesity status matter? Diabetes Care 29, 22312237.
12. Crume, TL, Ogden, L, Maligie, M, et al. (2011) Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero . Diabetes Care 34, 641645.
13. Savino, F, Benetti, S, Liguori, SA, et al. (2013) Advances on human milk hormones and protection against obesity. Cell Mol Biol (Noisy-le-grand) 59, 8998.
14. Bronsky, J, Mitrova, K, Nevoral, J, et al. (2012) Immunoexpression of type-1 adiponectin receptor in the human intestine. Cesk Patol 48, 165166.
15. Barrenetxe, J, Villaro, AC, Guembe, L, et al. (2002) Distribution of the long leptin receptor isoform in brush border, basolateral membrane, and cytoplasm of enterocytes. Gut 50, 797802.
16. Andres, SF, Simmons, JG, Mah, AT, et al. (2013) Insulin receptor isoform switching in intestinal stem cells, progenitors, differentiated lineages and tumors: evidence that IR-B limits proliferation. J Cell Sci 126, 56455656.
17. Mitrović, O, Čokić, V, Đikić, D, et al. (2014) Ghrelin receptors in human gastrointestinal tract during prenatal and early postnatal development. Peptides 57, 111.
18. Schuster, S, Hechler, C, Gebauer, C, et al. (2011) Leptin in maternal serum and breast milk: association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr Res 70, 633637.
19. Martin, LJ, Woo, JG, Geraghty, SR, et al. (2006) Adiponectin is present in human milk and is associated with maternal factors. Am J Clin Nutr 83, 11061111.
20. Fields, DA & Demerath, EW (2012) Relationship of insulin, glucose, leptin, IL-6 and TNF-alpha in human breast milk with infant growth and body composition. Pediatr Obes 7, 304312.
21. Dundar, NO, Dundar, B, Cesur, G, et al. (2010) Ghrelin and adiponectin levels in colostrum, cord blood and maternal serum. Pediatr Int 52, 622625.
22. Aydin, S (2010) The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 31, 22362240.
23. Ley, SH, Hanley, AJ, Sermer, M, et al. (2012) Associations of prenatal metabolic abnormalities with insulin and adiponectin concentrations in human milk. Am J Clin Nutr 95, 867874.
24. Woo, JG, Guerrero, ML, Altaye, M, et al. (2009) Human milk adiponectin is associated with infant growth in two independent cohorts. Breastfeed Med 4, 101109.
25. Andreas, NJ, Hyde, MJ, Gale, C, et al. (2014) Effect of maternal body mass index on hormones in breast milk: a systematic review. PLOS ONE 9, e115043.
26. Weyermann, M, Brenner, H & Rothenbacher, D (2007) Adipokines in human milk and risk of overweight in early childhood: a prospective cohort study. Epidemiology 18, 722729.
27. Doneray, H, Orbak, Z & Yildiz, L (2009) The relationship between breast milk leptin and neonatal weight gain. Acta Paediatr 98, 643647.
28. Cesur, G, Ozguner, F, Yilmaz, N, et al. (2012) The relationship between ghrelin and adiponectin levels in breast milk and infant serum and growth of infants during early postnatal life. J Physiol Sci 62, 185190.
29. Chan, D, Goruk, S, Becker, AB, et al. (2017) Adiponectin, leptin and insulin in breast milk: associations with maternal characteristics and infant body composition in the first year of life. Int J Obes (Lond) 42, 3643.
30. Woo, JG, Guerrero, ML, Guo, F, et al. (2012) Human milk adiponectin affects infant weight trajectory during the second year of life. J Pediatr Gastroenterol Nutr 54, 532539.
31. van Beusekom, CM, Zeegers, TA, Martini, IA, et al. (1993) Milk of patients with tightly controlled insulin-dependent diabetes mellitus has normal macronutrient and fatty acid composition. Am J Clin Nutr 57, 938943.
32. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37, Suppl. 1, S81S90.
33. Aydin, S, Geckil, H, Karatas, F, et al. (2007) Milk and blood ghrelin level in diabetics. Nutrition 23, 807811.
34. Machin, D, Campbell, M, Fayers, P, et al. (1997) Sample Size Tables for Clinical Studies, 2nd ed. Malden, MA: Blackwell Science.
35. Neter, J, Wasserman, W & Kutner, M (1983) Applied Linear Regression Models. Chicago, IL: Richard D. Irwin Inc.
36. Newburg, DS, Woo, JG & Morrow, AL (2010) Characteristics and potential functions of human milk adiponectin. J Pediatr 156, S41S46.
37. Bronsky, J, Mitrova, K, Karpisek, M, et al. (2011) Adiponectin, AFABP, and leptin in human breast milk during 12 months of lactation. J Pediatr Gastroenterol Nutr 52, 474477.
38. Savino, F, Liguori, SA, Sorrenti, M, et al. (2011) Breast milk hormones and regulation of glucose homeostasis. Int J Pediatr 2011, 803985.
39. Savino, F, Liguori, SA, Petrucci, E, et al. (2010) Evaluation of leptin in breast milk, lactating mothers and their infants. Eur J Clin Nutr 64, 972977.
40. Prudom, C, Liu, J, Patrie, J, et al. (2010) Comparison of competitive radioimmunoassays and two-site sandwich assays for the measurement and interpretation of plasma ghrelin levels. J Clin Endocrinol Metab 95, 23512358.
41. Schueler, J, Alexander, B, Hart, AM, et al. (2013) Presence and dynamics of leptin, GLP-1, and PYY in human breast milk at early postpartum. Obesity (Silver Spring) 21, 14511458.
42. Brunner, S, Schmid, D, Zang, K, et al. (2015) Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatr Obes 10, 6773.
43. Ahuja, S, Boylan, M, Hart, S, et al. (2011) Glucose and insulin levels are increased in obese and overweight mothers’ breast-milk. Food Nutr Sci 2, 201206.
44. Cnop, M, Havel, PJ, Utzschneider, KM, et al. (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46, 459469.
45. Savino, F, Fissore, MF, Liguori, SA, et al. (2009) Can hormones contained in mothers’ milk account for the beneficial effect of breast-feeding on obesity in children? Clin Endocrinol (Oxf) 71, 757765.
46. Whitmore, TJ, Trengove, NJ, Graham, DF, et al. (2012) Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. Int J Endocrinol 2012, 296368.
47. Savino, F, Lupica, M, Benetti, S, et al. (2012) Adiponectin in breast milk: relation to serum adiponectin concentration in lactating mothers and their infants. Acta Paediatr 101, 10581062.
48. Weyermann, M, Beermann, C, Brenner, H, et al. (2006) Adiponectin and leptin in maternal serum, cord blood, and breast milk. Clin Chem 52, 20952102.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Yu et al. supplementary material
Figure S1

 Word (140 KB)
140 KB
Supplementary materials

Yu et al. supplementary material
Table S1

 Word (24 KB)
24 KB
Supplementary materials

Yu et al. supplementary material
Table S2

 Word (21 KB)
21 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed