Skip to main content Accessibility help
×
Home

Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study

  • Wen-qi Shi (a1), Jun Liu (a1) (a2), Yi Cao (a1), Ying-ying Zhu (a1), Ke Guan (a1) and Yu-ming Chen (a1)...

Abstract

Previous studies have suggested that vitamin E (VE) may affect bone health, but the findings have been inconclusive. We examined the relationship between VE status (in both diet and serum) and bone mineral density (BMD) among Chinese adults. This community-based study included 3203 adults (2178 women and 1025 men) aged 40–75 years from Guangzhou, People’s Republic of China. General and dietary intake information were collected using structured questionnaire interviews. The serum α-tocopherol (TF) level was quantified by reversed-phase HPLC. The BMD of the whole body, the lumbar spine and left hip sites (total, neck, trochanter, intertrochanter and Ward’s triangle) were measured using dual-energy X-ray absorptiometry. In women, the dietary intake of VE was significantly and positively associated with BMD at the lumbar spine, total hip, intertrochanter and femur neck sites after adjusting for covariates (P trend: 0·001–0·017). Women in quartile 3 of VE intake typically had the highest BMD; the covariate-adjusted mean BMD were 2·5, 3·06, 3·41 and 3·54 % higher, respectively, in quartile 3 (v. 1) at the four above-mentioned sites. Similar positive associations were observed between cholesterol-adjusted serum α-TF levels and BMD at each of the studied bone sites (P trend: 0·001–0·022). The covariate-adjusted mean BMD were 1·24–4·83 % greater in quartile 4 (v. 1) in women. However, no significant associations were seen between the VE levels (dietary or serum) and the BMD at any site in men. In conclusion, greater consumption and higher serum levels of VE are associated with greater BMD in Chinese women but not in Chinese men.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Y.-m. Chen, fax +86 20 87330446, email chenyum@mail.sysu.edu.cn

References

Hide All
1. National Osteoporosis Foundation (2014) What is osteoporosis? http://nof.org/articles/7 (accessed August 2014).
2. Tella, SH & Gallagher, JC (2014) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 142, 155170.
3. Xia, WB, He, SL, Xu, L, et al. (2012) Rapidly increasing rates of hip fracture in Beijing, China. J Bone Miner Res 27, 125129.
4. Burton, GW, Cheeseman, KH, Doba, T, et al. (1983) Vitamin E as an antioxidant in vitro and in vivo. Ciba Found Symp 101, 418.
5. Lacativa, PGS & de Farias, MLF (2010) Osteoporosis and inflammation. Arq Bras Endocrinol Metabol 54, 123132.
6. Schett, G (2011) Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Invest 41, 13611366.
7. Boyle, WJ, Simonet, WS & Lacey, DL (2003) Osteoclast differentiation and activation. Nature 423, 337342.
8. Weitzmann, MN (2013) The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica 2013, 125705.
9. Manolagas, SC & Parfitt, AM (2010) What old means to bone. Trends Endocrinol Metab 21, 369374.
10. Ames, BN (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221, 12561264.
11. Bhatti, FU, Mehmood, A, Wajid, N, et al. (2013) Vitamin E protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm Res 62, 781789.
12. Mehat, MZ, Shuid, AN, Mohamed, N, et al. (2010) Beneficial effects of vitamin E isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats. J Bone Miner Metab 28, 503509.
13. Michaelsson, K, Wolk, A, Byberg, L, et al. (2014) Intake and serum concentrations of alpha-tocopherol in relation to fractures in elderly women and men: 2 cohort studies. Am J Clin Nutr 99, 107114.
14. Zhang, J, Munger, RG, West, NA, et al. (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163, 917.
15. Mata-Granados, JM, Cuenca-Acebedo, R, Luque de Castro, MD, et al. (2013) Lower vitamin E serum levels are associated with osteoporosis in early postmenopausal women: a cross-sectional study. J Bone Miner Metab 31, 455460.
16. Wolf, RL, Cauley, JA, Pettinger, M, et al. (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82, 581588.
17. Hamidi, MS, Corey, PN & Cheung, AM (2012) Effects of vitamin E on bone turnover markers among US postmenopausal women. J Bone Miner Res 27, 13681380.
18. Chin, KY & Ima-Nirwana, S (2014) The effects of α-tocopherol on bone: a double-edged sword? Nutrients 6, 14241441.
19. Millen, AE, Dodd, KW & Subar, AF (2004) Use of vitamin, mineral, nonvitamin, and nonmineral supplements in the United States: the 1987, 1992, and 2000 National Health Interview Survey results. J Am Diet Assoc 104, 942950.
20. Liang, W, Lee, AH & Binns, CW (2009) Dietary supplementation by older adults in southern China: a hospital outpatient clinic study. BMC Complement Altern Med 9, 39.
21. Liu, YH, Xu, Y, Wen, YB, et al. (2013) Association of weight-adjusted body fat and fat distribution with bone mineral density in middle-aged Chinese adults: a cross-sectional study. PLOS ONE 8, e63339.
22. Sun, LL, Li, BL, Xie, HL, et al. (2014) Associations between the dietary intake of antioxidant nutrients and the risk of hip fracture in elderly Chinese: a case-control study. Br J Nutr 112, 17061714.
23. Wang, P, Chen, YM, He, LP, et al. (2012) Association of natural intake of dietary plant sterols with carotid intima-media thickness and blood lipids in Chinese adults: a cross-section study. PLOS ONE 7, e32736.
24. Zhang, CX & Ho, SC (2009) Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.
25. Yang, YX, Wang, GY & Pan, XC (2002) China Food Composition Table. Beijing: Peking University Medical Press.
26. Burri, BJ, Dopler-Nelson, M & Neidllinger, TR (2003) Measurements of the major isoforms of vitamins A and E and carotenoids in the blood of people with spinal-cord injuries. J Chromatogr A 987, 359366.
27. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1231S.
28. Traber, MG & Jialal, I (2000) Measurement of lipid-soluble vitamins – further adjustment needed? Lancet 355, 20132014.
29. Ortega, RM, Requejo, AM, Lopez-Sobaler, AM, et al. (2002) Cognitive function in elderly people is influenced by vitamin E status. J Nutr 132, 20652068.
30. The Chinese Nutrition Society (2014) Chinese Dietary Reference Intakes, version 2013. Beijing: Science.
31. Macdonald, HM, New, SA, Golden, MH, et al. (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79, 155165.
32. Chavan, SN, More, U, Mulgund, S, et al. (2007) Effect of supplementation of vitamin C and E on oxidative stress in osteoporosis. Indian J Clin Biochem 22, 101105.
33. Huang, HY & Appel, LJ (2003) Supplementation of diets with alpha-tocopherol reduces serum concentrations of gamma- and delta-tocopherol in humans. J Nutr 133, 31373140.
34. Ha, H, Lee, JH, Kim, HN, et al. (2011) α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity. Biochem Biophys Res Commun 406, 546551.
35. Vega, D, Maalouf, NM & Sakhaee, K (2007) The role of receptor activator of nuclear factor-kappa B (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab 92, 45144521.
36. Iotsova, V, Caamano, J, Loy, J, et al. (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3, 12851289.
37. Bai, XC, Lu, D, Bai, J, et al. (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314, 197207.
38. Baron, R & Rawadi, G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5, 7380.
39. Sergeev, IN, Kha, KP, Blazheevich, NV, et al. (1987) [Effect of combined vitamin D and E deficiencies on calcium metabolism and bone tissue of the rat]. Vopr Pitan, 3943.
40. Ahmad, NS, Khalid, BA, Luke, DA, et al. (2005) Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharmacol Physiol 32, 761770.
41. Norazlina, M, Lee, PL, Lukman, HI, et al. (2007) Effects of vitamin E supplementation on bone metabolism in nicotine-treated rats. Singapore Med J 48, 195199.
42. Dreyer, L, Prescott, E & Gyntelberg, F (2003) Association between atherosclerosis and female lung cancer – a Danish cohort study. Lung Cancer 42, 247254.
43. Vassalle, C, Maffei, S, Boni, C, et al. (2008) Gender-related differences in oxidative stress levels among elderly patients with coronary artery disease. Fertil Steril 89, 608613.
44. Kikuchi, A, Takeda, A, Onodera, H, et al. (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9, 244248.
45. Wright, ME, Lawson, KA, Weinstein, SJ, et al. (2006) Higher baseline serum concentrations of vitamin E are associated with lower total and cause-specific mortality in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr 84, 12001207.
46. Rautalahti, M, Albanes, D, Haukka, J, et al. (1993) Seasonal variation of serum concentrations of beta-carotene and alpha-tocopherol. Am J Clin Nutr 57, 551556.

Keywords

Type Description Title
WORD
Supplementary materials

Shi supplementary material
Table S1-S2

 Word (43 KB)
43 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed