Skip to main content Accessibility help
×
Home

Association between zinc pool sizes and iron stores in premenopausal women without anaemia

  • Katsuhiko Yokoi (a1), Harold H. Sandstead (a2), Norman G. Egger (a3), Nancy W. Alcock (a2), V. M. Sadagopa Ramanujam (a2), Hari H. Dayal (a2) and James G. Penland (a4)...

Abstract

The simultaneous occurrence of Zn and Fe deficiencies in man has been known since the discovery of human Zn deficiency. However, it is not established that low Fe stores per se or Fe-deficiency anaemia infer low Zn status. Therefore our objective was to identify relationships between Zn and Fe status in premenopausal women without anaemia. We also examined the contribution of food frequencies and blood loss to Zn and Fe status. The subjects were thirty-three apparently healthy premenopausal women without anaemia, who were not taking dietary supplements containing Zn or Fe or oral contraceptives. Main outcomes were Zn kinetic parameters based on the three-compartment mammillary model and serum ferritin (SF) concentration; contributing factors were the frequency of consumption of specific foods and menorrhagia. Lower SF was significantly associated with smaller sizes of Zn pools. The breakpoint in the relationship between SF and the lesser peripheral Zn pool was found to be 21·0 μg SF/l. SF also correlated positively with frequency of beef consumption and negatively with bleeding through menstrual pads (BTMP). Similar to SF, the Zn pool sizes correlated positively with frequency of beef consumption, and negatively with BTMP. In summary, Zn pool sizes and Fe stores were highly correlated in premenopausal women. SF concentrations < 20 μg/l suggest an increased likelihood of low Zn status.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association between zinc pool sizes and iron stores in premenopausal women without anaemia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Association between zinc pool sizes and iron stores in premenopausal women without anaemia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Association between zinc pool sizes and iron stores in premenopausal women without anaemia
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Katsuhiko Yokoi, fax +81 47 363 1401, email KatsuhikoY@aol.com

References

Hide All
1Prasad, AS, Halsted, JA & Nadimi, M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism, and geophagia. Am J Med 31, 532546.
2Prasad, A, Miale, A, Farid, Z, Sandstead, HH & Schulert, A (1963) Zinc metabolism in patients with syndrome of iron deficiency anemia, hepato-splenomegaly, dwarfism and hypogonadism. J Lab Clin Med 61, 537549.
3Prasad, AS, Miale, A Jr, Farid, Z, Sandstead, HH, Schulert, AR & Darby, WJ (1963) Biochemical studies on dwarfism, hypogonadism, and anemia. Arch Intern Med 111, 407428.
4Sandstead, HH (1991) Zinc deficiency: a public health problem. Am J Dis Child 145, 835859.
5Sandstead, HH (2000) Causes of iron and zinc deficiencies and their effects on brain. J Nutr 130, 347S349S.
6Yokoi, K, Egger, NG, Ramanujam, VM, Alcock, NW, Dayal, HH, Penland, JG & Sandstead, HH (2003) Association between plasma zinc concentration and zinc kinetic parameters in premenopausal women. Am J Physiol Endocrinol Metab 285, E1010E1020.
7Wasantwisut, E, Winichagoon, P, Chitchumroonchokchai, C, Yamborisut, U, Boonpraderm, A, Pongcharoen, T, Sranacharoenpong, K & Russameesopaphorn, W (2006) Iron and zinc supplementation improved iron and zinc status, but not physical growth, of apparently healthy, breast-fed infants in rural communities of northeast Thailand. J Nutr 136, 24052411.
8Pathak, P, Kapil, U, Kapoor, SK, Saxena, R, Kumar, A, Gupta, N, Dwivedi, SN, Singh, R & Singh, P (2004) Prevalence of multiple micronutrient deficiencies amongst pregnant women in a rural area of Haryana. Indian J Pediatr 71, 10071014.
9Hettiarachchi, M, Liyanage, C, Wickremasinghe, R, Hilmers, DC & Abrahams, SA (2006) Prevalence and severity of micronutrient deficiency: a cross-sectional study among adolescents in Sri Lanka. Asia Pac J Clin Nutr 15, 5663.
10Yokoi, K, Alcock, NW & Sandstead, HH (1994) Iron and zinc nutriture of premenopausal women: associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J Lab Clin Med 124, 852861.
11Thoradeniya, T, Wickremasinghe, R, Ramanayake, R & Atukorala, S (2006) Low folic acid status and its association with anaemia in urban adolescent girls and women of childbearing age in Sri Lanka. Br J Nutr 95, 511516.
12Fogelholm, M, Alopaeus, K, Silvennoinen, T & Teirila, J (1993) Factors affecting iron status in non-pregnant women from urban South Finland. Eur J Clin Nutr 47, 567574.
13Pate, RR, Miller, BJ, Davis, JM, Slentz, CA & Klingshirn, LA (1993) Iron status of female runners. Int J Sport Nutr 3, 222231.
14Gibson, RS, Heath, AL & Ferguson, EL (2002) Risk of suboptimal iron and zinc nutriture among adolescent girls in Australia and New Zealand: causes, consequences, and solutions. Asia Pac J Clin Nutr 11, Suppl. 3, S543S552.
15Worthington-Roberts, B, Breskin, M & Monsen, E (1988) Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am J Clin Nutr 47, 275279.
16Heath, AL & Fairweather-Tait, SJ (2002) Clinical implications of changes in the modern diet: iron intake, absorption and status. Best Pract Res Clin Haematol 15, 225241.
17Hallberg, L & Rossander-Hultén, L (1991) Iron requirements in menstruating women. Am J Clin Nutr 54, 10471058.
18Centers for Disease Control and Prevention (2002) Iron deficiency – United States, 1999-2000. MMWR Morb Mortal Wkly Rep 51, 897899.
19Stoltzfus, RJ (2001) Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr 131, 697S701S.
20Wuehler, SE, Peerson, JM & Brown, KH (2005) Use of national food balance data to estimate the adequacy of zinc in national food supplies: methodology and regional estimates. Public Health Nutr 8, 812819.
21Fairweather-Tait, S, Jackson, M, Fox, T, Wharf, S, Eagles, J & Croghan, P (1993) The measurement of exchangeable pools of zinc using the stable isotope 70Zn. Br J Nutr 70, 221234.
22Miller, LV, Hambidge, KM, Naake, VL, Hong, Z, Westcott, JL & Fennessey, PV (1994) Size of the zinc pools that exchange rapidly with plasma zinc in humans: alternative techniques for measuring and relation to dietary zinc intake. J Nutr 124, 268276.
23Jacob, RA, Sandstead, HH, Klevay, LM & Johnson, LK (1980) Utility of serum ferritin as a measure of iron deficiency in normal males undergoing repetitive phlebotomy. Blood 56, 786791.
24Cook, JD, Lipschitz, DA, Miles, LE & Finch, CA (1974) Serum ferritin as a measure of iron stores in normal subjects. Am J Clin Nutr 27, 681687.
25Penland, J, Egger, N, Ramanujam, V, Dayal, H & Sandstead, H (2002) Zinc (Zn) and iron (Fe) repletion improves cognitive function of mildly deficient women. FASEB J 16, A974.
26Sandstead, HH, Penland, JG, Alcock, NW, Dayal, HH, Chen, XC, Li, JS, Zhao, F & Yang, JJ (1998) Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am J Clin Nutr 68, 470S475S.
27Ronaghy, HA, Reinhold, JG, Mahloudji, M, Ghavami, P, Fox, MR & Halsted, JA (1974) Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. Am J Clin Nutr 27, 112–121.
28Solomons, NW, Ruz, M & Gibson, RS (1999) Single-nutrient interventions with zinc. Am J Clin Nutr 70, 111113.
29Yokoi, K, Alcock, NW & Sandstead, HH (1994) Determination of the plasma zinc disappearance constant using stable zinc isotope and inductively coupled plasma-mass spectrometry, and its application for assessing zinc status. Biomed Res Trace Elements 5, 69–76.
30Kyle, UG, Bosaeus, I, De Lorenzo, AD, et al. (2004) Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr 23, 12261243.
31Alcock, NW (1987) A hydrogen-peroxide digestion system for tissue trace metal analysis. Biol Trace Elem Res 13, 363–370.
32Ramanujam, VMS, Yokoi, K, Egger, NG, Dayal, HH, Alcock, NW & Sandstead, HH (1999) Simplified pretreatment method for the analysis of plasma samples applicable to zinc kinetics and inductively coupled plasma-mass spectrometry. Biol Trace Elem Res 68, 143–158.
33Willett, WC, Sampson, L, Stampfer, MJ, Rosner, B, Bain, C, Witschi, J, Hennekens, CH & Speizer, FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 51–65.
34Beard, JL & Dawson, HD (1997) Iron. In Handbook of Nutritionally Essential Mineral Elements, pp. 275334 [O'Dell, BL and Sunde, RA, editors]. New York, USA: Marcel Dekker, Inc.
35Hallberg, L (1981) Bioavailability of dietary iron in man. In Annual Review of Nutrition, pp. 123–147 [W Darby, H Broquist and R Olson, editors]. Palo Alto, CA: Annual Reviews Inc.
36Soustre, Y, Dop, MC, Galan, P & Hercberg, S (1986) Dietary determinants of the iron status in menstruating women. Int J Vitam Nutr Res 56, 281286.
37Fleming, DJ, Jacques, PF, Dallal, GE, Tucker, KL, Wilson, PW & Wood, RJ (1998) Dietary determinants of iron stores in a free-living elderly population: The Framingham heart study. Am J Clin Nutr 67, 722733.
38Ortega, RM, Lopez-Sobaler, AM, Requejo, AM, Quintas, ME, Gaspar, MJ, Andres, P & Navia, B (1998) The influence of meat consumption on dietary data, iron status and serum lipid parameters in young women. Int J Vitam Nutr Res 68, 255–262.
39McCance, R, Edgecombe, C & Widdowson, E (1943) Phytic acid and iron absorption. Lancet ii, 126–128.
40Brune, M, Rossander-Hultén, L, Hallberg, L, Gleerup, A & Sandberg, AS (1992) Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J Nutr 122, 442449.
41Milman, N, Rosdahl, N, Lyhne, N, Jorgensen, T & Graudal, N (1993) Iron status in Danish women aged 35-65 years. Relation to menstruation and method of contraception. Acta Obstet Gynecol Scand 72, 601605.
42Kepczyk, T, Cremins, JE, Long, BD, Bachinski, MB, Smith, LR & McNally, PR (1999) A prospective, multidisciplinary evaluation of premenopausal women with iron-deficiency anemia. Am J Gastroenterol 94, 109–115.
43O'Dell, BL, Burpo, CE & Savage, JE (1972) Evaluation of zinc availability in foodstuffs of plant and animal origin. J Nutr 102, 653660.
44Gallaher, D, Johnson, P, Hunt, J, Lykken, G & Marchello, M (1988) Bioavailability in humans in zinc from beef: intrinsic vs extrinsic labels. Am J Clin Nutr 48, 350–354.
45Wisker, E, Nagel, R, Tanudjaja, TK & Feldheim, W (1991) Calcium, magnesium, zinc, and iron balances in young women: effects of a low-phytate barley-fiber concentrate. Am J Clin Nutr 54, 553559.
46Sandström, B & Sandberg, A (1992) Inhibitory effects of isolated inositol phosphates on zinc absorption. J Trace Elem Electrolytes Health Dis 6, 99–103.
47Knudsen, E, Sandström, B & Solgaard, P (1996) Zinc, copper and magnesium absorption from a fibre-rich diet. J Trace Elem Med Biol 10, 68–76.
48Lykken, GI, Mahalko, J, Johnson, PE, Milne, D, Sandstead, HH, Garcia, WJ, Dintzis, FR & Inglett, GE (1986) Effect of browned and unbrowned corn products intrinsically labeled with 65Zn on absorption of 65Zn in humans. J Nutr 116, 795801.
49Ferguson, EL, Gibson, RS, Thompson, LU & Ounpuu, S (1989) Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of east African children. Am J Clin Nutr 50, 14501456.
50Gibson, RS, Smit Vanderkooy, PD & Thompson, L (1991) Dietary phytate x calcium/zinc millimolar ratios and zinc nutriture in some Ontario preschool children. Biol Trace Elem Res 30, 87–94.
51Ferguson, EL, Gibson, RS, Opare-Obisaw, C, Ounpuu, S, Thompson, LU & Lehrfeld, J (1993) The zinc nutriture of preschool children living in two African countries. J Nutr 123, 14871496.
52Fitzgerald, SL, Gibson, RS, Quan de Serrano, J, Portocarrero, L, Vasquez, A, de Zepeda, E, Lopez-Palacios, CY, Thompson, LU, Stephen, AM & Solomons, NW (1993) Trace element intakes and dietary phytate/Zn and Ca x phytate/Zn millimolar ratios of periurban Guatemalan women during the third trimester of pregnancy. Am J Clin Nutr 57, 195–201.
53Sandström, B, Almgren, A, Kivisto, B & Cederblad, A (1989) Effect of protein level and protein source on zinc absorption in humans. J Nutr 119, 48–53.
54Pécoud, A, Donzel, P & Schelling, JL (1975) Effect of foodstuffs on the absorption of zinc sulfate. Clin Pharmacol Ther 17, 469474.
55Van Dyck, K, Tas, S, Robberecht, H & Deelstra, H (1996) The influence of different food components on the in vitro availability of iron, zinc and calcium from a composed meal. Int J Food Sci Nutr 47, 499506.
56Takenaka, M, Sato, N, Asakawa, H, Wen, X, Murata, M & Homma, S (2005) Characterization of a metal-chelating substance in coffee. Biosci Biotechnol Biochem 69, 26–30.
57Wen, X, Enokizo, A, Hattori, H, Kobayashi, S, Murata, M & Homma, S (2005) Effect of roasting on properties of the zinc-chelating substance in coffee brews. J Agric Food Chem 53, 26842689.
58Dewey, KG, Romero-Abal, ME, Quan de Serrano, J, Bulux, J, Peerson, JM, Eagle, P & Solomons, NW (1997) Effects of discontinuing coffee intake on iron status of iron-deficient Guatemalan toddlers: a randomized intervention study. Am J Clin Nutr 66, 168–176.
59Aldrian, PS, Keen, CL, Lonnerdal, B & Dewey, KG (1997) Effects of coffee consumption on iron, zinc and copper status in nonpregnant and pregnant Sprague-Dawley rats. Int J Food Sci Nutr 48, 177189.
60Rossowska, MJ & Nakamoto, T (1990) Effect of caffeine on zinc absorption and Zn concentration in rat tissue. Br J Nutr 64, 553559.
61Kies, C, Young, E & McEndree, L (1983) Zinc bioavailability from vegetarian diets. Influence of dietary fiber, ascorbic acid, and past dietary practices. In Nutritional Bioavailability of Zinc. ACS Symposium Series, pp. 115–126 [Inglett, G, editor]. Washington, DC: American Chemical Society vol. 210, .
62Solomons, NW, Jacob, RA, Pineda, O & Viteri, FE (1979) Studies on the bioavailability of zinc in man. III. Effects of ascorbic acid on zinc absorption. Am J Clin Nutr 32, 24952499.
63Sandström, B & Cederblad, A (1987) Effect of ascorbic acid on the absorption of zinc and calcium in man. Int J Vitam Nutr Res 57, 87–90.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed