Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T05:27:32.266Z Has data issue: false hasContentIssue false

Association between time-restricted eating and non-alcoholic fatty liver disease in a nationwide cross-sectional study

Published online by Cambridge University Press:  27 March 2023

Xueke Zeng
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, People’s Republic of China NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, Anhui, People’s Republic of China Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, People’s Republic of China
Shaoyu Xie
Affiliation:
Department of Chronic Non-communicable Diseases Prevention and Control, Lu’an Municipal Center for Disease Control and Prevention, Lu’an, Anhui, People’s Republic of China
Fei Jiang
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Xiude Li
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Meiling Li
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Tengfei Zhang
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Yaozong Zhang
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Songxian Rao
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Yufeng Mo
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Honghua Zhang
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Shu Ye
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Mengfei Liu
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Haowei Li
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Yu Zhu
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Yong Huang
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Danni Wang
Affiliation:
Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China
Wanshui Yang*
Affiliation:
Department of Nutrition, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, People’s Republic of China Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, People’s Republic of China NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, Anhui, People’s Republic of China Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, People’s Republic of China
*
*Corresponding author: Wanshui Yang, email wanshuiyang@gmail.com

Abstract

The association between time-restricted eating (TRE) and the risk of non-alcoholic fatty liver disease (NAFLD) is less studied. Moreover, whether the association is independent of physical exercise or diet quality or quantity is uncertain. In this nationwide cross-sectional study of 3813 participants, the timing of food intakes was recorded by 24-h recalls; NAFLD was defined through vibration-controlled transient elastography in the absence of other causes of chronic liver disease. OR and 95 % CI were estimated using logistic regression. Participants with daily eating window of ≤ 8 h had lower odds of NAFLD (OR = 0·70, 95 % CI: 0·52, 0·93), compared with those with ≥ 10 h window. Early (05.00–15.00) and late TRE (11.00–21.00) showed inverse associations with NAFLD prevalence without statistical heterogeneity (Pheterogeneity = 0·649) with OR of 0·73 (95 % CI: 0·36, 1·47) and 0·61 (95 % CI: 0·44, 0·84), respectively. Such inverse association seemed stronger in participants with lower energy intake (OR = 0·58, 95 % CI: 0·38, 0·89, Pinteraction = 0·020). There are no statistical differences in the TRE-NAFLD associations according to physical activity (Pinteraction = 0·390) or diet quality (Pinteraction = 0·110). TRE might be associated with lower likelihood of NAFLD. Such inverse association is independent of physical activity and diet quality and appears stronger in individuals consuming lower energy. Given the potential misclassification of TRE based on one- or two-day recall in the analysis, epidemiological studies with validated methods for measuring the habitual timing of dietary intake are warranted.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally as co-first authors

These authors contributed equally as co-corresponding authors

References

Riazi, K, Azhari, H, Charette, JH, et al. (2022) The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 7, 851861.CrossRefGoogle Scholar
Younossi, ZM, Corey, KE & Lim, JK (2021) AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review. Gastroenterology 160, 912918.CrossRefGoogle ScholarPubMed
Zhu, Y, Peng, Z, Lu, Y, et al. (2022) Higher dietary insulinaemic potential is associated with increased risk of liver steatosis and fibrosis. Liver Int: Offic J Int Assoc Study of the Liver 42, 6979.CrossRefGoogle ScholarPubMed
Li, X, Zhang, T, Li, H, et al. (2022) Associations between intake of starchy and non-starchy vegetables and risk of hepatic steatosis and fibrosis. Hepatol Int 16, 846857.CrossRefGoogle Scholar
Li, X, Li, M, Xu, L, et al. (2022) Associations between low-carbohydrate and low-fat diets and hepatic steatosis. Obesity 30, 23172328.CrossRefGoogle ScholarPubMed
Zelber-Sagi, S, Grinshpan, LS, Ivancovsky-Wajcman, D, et al. (2022) One size does not fit all; practical, personal tailoring of the diet to NAFLD patients. Liver Int 42, 17311750.CrossRefGoogle Scholar
Patikorn, C, Roubal, K, Veettil, SK, et al. (2021) Intermittent fasting and obesity-related health outcomes: an umbrella review of meta-analyses of randomized clinical trials. JAMA Netw Open 4, e2139558.CrossRefGoogle ScholarPubMed
Swiatkiewicz, I, Wozniak, A & Taub, PR (2021) Time-restricted eating and metabolic syndrome: current status and future perspectives. Nutrients 13, 221.CrossRefGoogle ScholarPubMed
Chung, H, Chou, W, Sears, DD, et al. (2016) Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 65, 17431754.CrossRefGoogle Scholar
Holmer, M, Lindqvist, C, Petersson, S, et al. (2021) Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet – a randomised controlled trial. JHEP Rep 3, 100256.CrossRefGoogle ScholarPubMed
Johari, MI, Yusoff, K, Haron, J, et al. (2019) A randomised controlled trial on the effectiveness and adherence of modified alternate-day calorie restriction in improving activity of non-alcoholic fatty liver disease. Sci Rep 9, 11232.CrossRefGoogle ScholarPubMed
Cai, H, Qin, YL, Shi, ZY, et al. (2019) Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC Gastroenterol 19, 219.CrossRefGoogle ScholarPubMed
Heilbronn, LK & Regmi, P (2020) Will delaying breakfast mitigate the metabolic health benefits of time-restricted eating? Obesity 28, S6S7.CrossRefGoogle Scholar
Hutchison, AT, Regmi, P, Manoogian, ENC, et al. (2019) Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity 27, 724732.CrossRefGoogle ScholarPubMed
Regmi, P, Chaudhary, R, Page, AJ, et al. (2021) Early or delayed time-restricted feeding prevents metabolic impact of obesity in mice. J Endocrinol 248, 7586.CrossRefGoogle ScholarPubMed
Gill, S & Panda, S (2015) A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 22, 789798.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention & National Health and Nutrition Examination Survey (NHANES) (2017) About the National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed March 2021).Google Scholar
Vilar-Gomez, E, Nephew, LD, Vuppalanchi, R, et al. (2021) High-quality diet, physical activity, and college education are associated with low risk of NAFLD among the US population. Hepatology 75, 14911506.CrossRefGoogle Scholar
Kim, D, Konyn, P, Cholankeril, G, et al. (2021) Physical activity is associated with nonalcoholic fatty liver disease and significant fibrosis measured by FibroScan. Clin Gastroenterol Hepatol 20, e1438e1455.Google Scholar
Zhang, Z, Zeng, X, Li, M, et al. (2022) A Prospective study of fruit juice consumption and the risk of overall and cardiovascular disease mortality. Nutrients 14, 2127.CrossRefGoogle ScholarPubMed
Eddowes, PJ, Sasso, M, Allison, M, et al. (2019) Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 17171730.CrossRefGoogle ScholarPubMed
Ciardullo, S, Monti, T & Perseghin, G (2021) High prevalence of advanced liver fibrosis assessed by transient elastography among U.S. adults with type 2 diabetes. Diabetes Care 44, 519525.CrossRefGoogle ScholarPubMed
Wilson, RB, Zhang, R, Chen, YJ, et al. (2020) Two-week isocaloric time-restricted feeding decreases liver inflammation without significant weight loss in obese mice with non-alcoholic fatty liver disease. Int J Mol Sci 21, 9156.CrossRefGoogle ScholarPubMed
Regmi, P & Heilbronn, LK (2020) Time-restricted eating: benefits, mechanisms, and challenges in translation. iScience 23, 101161.CrossRefGoogle ScholarPubMed
Moon, S, Kang, J, Kim, SH, et al. (2020) Beneficial effects of time-restricted eating on metabolic diseases: a systemic review and meta-analysis. Nutrients 12, 1267.CrossRefGoogle ScholarPubMed
Chitturi, S, Wong, VW, Chan, WK, et al. (2018) The Asia-Pacific working party on non-alcoholic fatty liver disease guidelines 2017-part 2: management and special groups. J Gastroenterol Hepatol 33, 8698.CrossRefGoogle Scholar
Xie, Z, Sun, Y, Ye, Y, et al. (2022) Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat Commun 13, 1003.CrossRefGoogle ScholarPubMed
Cienfuegos, S, Gabel, K, Kalam, F, et al. (2020) Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab 32, 366378.e363.CrossRefGoogle Scholar
Liu, D, Huang, Y, Huang, C, et al. (2022) Calorie restriction with or without time-restricted eating in weight loss. N Engl J Med 386, 14951504.CrossRefGoogle ScholarPubMed
Watt, MJ, Miotto, PM, De Nardo, W, et al. (2019) The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev 40, 13671393.CrossRefGoogle ScholarPubMed
Pawlak, M, Lefebvre, P & Staels, B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62, 720733.CrossRefGoogle ScholarPubMed
Jamshed, H, Beyl, RA, Della Manna, DL, et al. (2019) Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 11, 1234.CrossRefGoogle ScholarPubMed
Adamovich, Y, Rousso-Noori, L, Zwighaft, Z, et al. (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19, 319330.CrossRefGoogle ScholarPubMed
Hatori, M, Vollmers, C, Zarrinpar, A, et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15, 848860.CrossRefGoogle ScholarPubMed
Jacobi, D, Liu, S, Burkewitz, K, et al. (2015) Hepatic Bmal1 Regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22, 709720.CrossRefGoogle ScholarPubMed
Dowman, JK, Tomlinson, JW & Newsome, PN (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM 103, 7183.CrossRefGoogle ScholarPubMed
Kesztyus, D, Cermak, P, Gulich, M, et al. (2019) Adherence to time-restricted feeding and impact on abdominal obesity in primary care patients: results of a pilot study in a pre-post design. Nutrients 11, 2854.CrossRefGoogle ScholarPubMed
Wilkinson, MJ, Manoogian, ENC, Zadourian, A, et al. (2020) Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31, 92104.e105.CrossRefGoogle ScholarPubMed
Yin, C, Li, Z, Xiang, Y, et al. (2021) Effect of intermittent fasting on non-alcoholic fatty liver disease: systematic review and meta-analysis. Front Nutr 8, 709683.CrossRefGoogle ScholarPubMed
Gioia, SC, Guirette, M, Chen, A, et al. (2022) How accurately can we recall the timing of food intake? A comparison of food times from recall-based survey questions and daily food records. Curr Dev Nutr 6, nzac002.CrossRefGoogle Scholar
Supplementary material: File

Zeng et al. supplementary material

Figure S1 and Table S1

Download Zeng et al. supplementary material(File)
File 41.3 KB