Skip to main content Accessibility help

Among the water-soluble vitamins, dietary intakes of vitamins C, B2 and folate are associated with the reduced risk of diabetes in Japanese women but not men

  • Ehab S. Eshak (a1) (a2), Hiroyasu Iso (a1), Isao Muraki (a1) and Akiko Tamakoshi (a3)


Recent studies have shown that micronutrients are involved in the pathology of type 2 diabetes. Antioxidant effects of vitamins C and B2 and homocysteine-lowering effects of vitamins B6, folate and B12 may have protective roles. However, a few reports have investigated the association between dietary water-soluble vitamin intakes and risk of diabetes. In a prospective study encompassing 19 168 healthy Japanese men and women aged 40–79 years, we examined the associations between dietary intakes of water-soluble vitamins, determined by a validated self-administered FFQ, with the risk of 5-year cumulative incidence of type 2 diabetes by using the logistic regression model. Within the 5-year period, there were 494 self-reported new cases of diabetes. Higher dietary intakes of vitamins C, B2 and folate were associated with lower risk of incident diabetes only in women, whereas no associations of dietary intakes of vitamins B1, B3, B5, B6 and B12 were observed in either sex. The multivariable OR in the highest v. the lowest quartile of intakes among women were 0·61 (95 % CI 0·44, 0·94; P-trend = 0·04) for vitamin C, 0·56 (95 % CI 0·34, 0·93; P-trend = 0·03) for vitamin B2 and 0·70 (95 % CI 0·46, 0·98; P-trend = 0·03) for folate. Other than that for sex (P < 0·05), the P-interactions with age, BMI, smoking status or having a family history of diabetes were >0·10. In conclusion, higher dietary intakes of vitamins C, B2 and folate, but not other water-soluble vitamins, were associated with reduced risk of type 2 diabetes in Japanese women.


Corresponding author

*Corresponding author: Ehab S. Eshak, email


Hide All
1. Zimmet, P, Alberti, KGMM & Shaw, J (2001) Global and societal implications of the diabetes epidemic. Nature 414, 782787.
2. Eshak, ES, Iso, H, Maruyama, K, et al. (2018) Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: a large population-based prospective cohort study. Clin Nutr 37, 667674.
3. Eshak, ES, Iso, H, Muraki, I, et al. (2018) Fat-soluble vitamins from diet in relation to risk of type 2 diabetes mellitus in Japanese population. Br J Nutr (epublication ahead of print version 20 December 2018).
4. Valdés-Ramos, R, Guadarrama-López, AL, Martínez-Carrillo, BE, et al. (2015) Vitamins and type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 15, 5463.
5. Martini, LA, Catania, AS & Ferreira, SR (2010) Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. Nutr Rev 68, 341354.
6. Zhou, C, Na, L, Shan, R, et al. (2016) Dietary vitamin C intake reduces the risk of type 2 diabetes in Chinese adults: HOMA-IR and T-AOC as potential mediators. PLOS ONE 11, e0163571.
7. Song, Y, Xu, Q, Park, Y, et al. (2011) Multivitamins, individual vitamin and mineral supplements, and risk of diabetes among older US adults. Diabetes Care 34, 108114.
8. Christie-David, DJ, Girgis, CM & Gunton, JE (2015) Effects of vitamins C and D in type 2 diabetes mellitus. Nutr Diet Suppl 7, 2128.
9. Song, Y, Cook, NR, Albert, CM, et al. (2009) Effects of vitamins C and E and beta-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: a randomized controlled trial. Am J Clin Nutr 90, 429437
10. Song, Y, Cook, NR, Albert, CM, et al. (2009) Effect of homocysteine-lowering treatment with folic acid and B vitamins on risk of type 2 diabetes in women: a randomized, controlled trial. Diabetes 58, 19211928.
11. Ahn, HJ, Min, KW & Cho, YO (2011) Assessment of vitamin B(6) status in Korean patients with newly diagnosed type 2 diabetes. Nutr Res Pract 5, 3439.
12. Gargari, BP, Aghamohammadi, V & Aliasgharzadeh, A (2011) Effect of folic acid supplementation on biochemical indices in overweight and obese men with type 2 diabetes. Diabetes Res Clin Pract 94, 3338.
13. Al-Attas, OS, Al-Daghri, NM, Alfadda, AA, et al. (2012) Blood thiamine and its phosphate esters as measured by high-performance liquid chromatography: levels and associations in diabetes mellitus patients with varying degrees of microalbuminuria. J Endocrinol Invest 35, 951956.
14. González-Ortiz, M, Martínez-Abundis, E, Robles-Cervantes, JA, et al. (2011) Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes. Eur J Nutr 50, 145149.
15. Goldie, C, Taylor, AJ, Nguyen, P, et al. (2016) Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart 102, 198203.
16. Sazonov, V, Maccubbin, D, Sisk, CM, et al. (2013) Effects of niacin on the incidence of new onset diabetes and cardiovascular events in patients with normoglycaemia and impaired fasting glucose. Int J Clin Pract 67, 297302.
17. Zhou, SS, Li, D, Sun, WP, et al. (2009) Nicotinamide overload may play a role in the development of type 2 diabetes. World J Gastroenterol 15, 56745684.
18. Demirci, B, Demir, O, Dost, T, et al. (2014) Protective effect of vitamin B5 (dexpanthenol) on cardiovascular damage induced by streptozocin in rats. Bratisl Lek Listy 115, 190196.
19. Tamakoshi, A, Ozasa, K, Fujino, Y, et al. (2013) Cohort profile of the Japan Collaborative Cohort Study at final follow-up. J Epidemiol 23, 227232.
20. Date, C, Fukui, M, Yamamoto, A, et al. (2005) Reproducibility and validity of a self-administered food frequency questionnaire used in the JACC Study. J Epidemiol 15, S923.
21. Ministry of Education, Culture, Sports Science and Technology-Japan (2009) Standard tables of food composition in Japan. 5th revised and enlarged edition, 2005. (In Japanese).
22. Will, JC & Byers, T (1996) Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev 54, 193202.
23. Montonen, J, Knekt, P, Järvinen, R, et al. (2004) Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27, 362366.
24. Fagt, S (2012) Nordic Dietary Surveys: study designs, methods, results and use in food-based risk assessments.
25. Jia, X, Wang, Z, Zhang, B, et al. (2018) Food sources and potential determinants of dietary vitamin C intake in Chinese adults: a cross-sectional study. Nutrients 10, E320.
26. Watanabe, T, Suemura, K, Taniguchi, A, et al. (2010) Dietary intake of seven B vitamins based on a total diet study in Japan. J Nutr Sci Vitaminol (Tokyo) 56, 279286.
27. Kirii, K, Mizoue, T, Iso, H, et al. (2009) Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 52, 25422550.
28. Ashoori, M & Saedisomeolia, A (2014) Riboflavin (vitamin B2) and oxidative stress: a review. Br J Nutr 111, 19851991.
29. Huang, T, Ren, J, Huang, J, et al. (2013) Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics 14, 867.
30. Power, HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77, 13521360.
31. Title, LM, Cummings, PM, Giddens, K, et al. (2000) Effect of folic acid and antioxidant vitamins on endothelial dysfunction in patients with coronary artery disease. J Am Coll Cardiol 36, 758765.
32. Meigs, JB, Hu, FB, Rifai, N, et al. (2004) Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291, 19781986.
33. Homocysteine-Lowering Trialists’ Collaboration (1998) Lowering blood homocysteine with folic acid supplements: meta-analysis of randomized trials. BMJ 316, 894898.
34. Goldberg, RB & Jacobson, TA (2008) Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clin Proc 83, 470478.


Type Description Title
Supplementary materials

Eshak et al. supplementary material
Figure S1 and Table S1

 PDF (300 KB)
300 KB

Among the water-soluble vitamins, dietary intakes of vitamins C, B2 and folate are associated with the reduced risk of diabetes in Japanese women but not men

  • Ehab S. Eshak (a1) (a2), Hiroyasu Iso (a1), Isao Muraki (a1) and Akiko Tamakoshi (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed