Skip to main content Accessibility help
×
Home

Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding

  • H. Mazahery-Laghab (a1), B. Yazdi-Samadi (a2), M. Bagheri (a3) and A. R. Bagheri (a4)

Abstract

Biochemical components in alfalfa (Medicago sativa L.), such as saponins, can act as protecting factors against bio-stresses. Saponins are also antifeedants and show oral toxicity towards higher and lower animals. Changes in saponins, such as variation in the carbon skeleton, or hydrolysis of saponin glycosides and other conjugates, may change their biological effects. The aims of this research were to study saponin variation in different growth stages of alfalfa and to investigate the biological role of saponins in the spotted alfalfa aphid, Therioaphis maculata. Saponins from alfalfa shoots in different growth stages were extracted, chemically purified and analysed by TLC. Specific saponins such as soyasaponin1 from root and shoot and two bisdesmosides of medicagenic acid, one from shoot and another from root tissues, were identified using reference compounds allowing changes in saponin composition during plant development in different shoot tissues of alfalfa to be assessed. The response of the alfalfa aphid to feeding on alfalfa in different growth stages was studied. No significant difference in the survival of aphids, from neonate to adult, was observed, but due to the antibiotic effects of saponins, two differences were found in the onset of nymph production and cumulative nymph production. The results show that the saponin composition in alfalfa changes with plant development and this, in turn, can often negatively affect the development of specific insect pests such as the spotted alfalfa aphid, suggesting a possible biological role of alfalfa saponins.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: H. Mazahery-Laghab, fax +98 811 4424012, email hojat.mazahery@yahoo.co.uk

References

Hide All
1Gatehouse, AMR, Minney, B, Dobie, P, et al. (1990) Biochemical resistance to brunched attack in legume seeds; investigation and exploitation. In Bruchids and Legumes: Economics, Ecology and Coevolution, pp. 241256 [Fujii, K, Gatehouse, AMR, Johnson, CD, Mitchel, R and Yoshida, T, editors]. Dordrecht: Kluwer Academic Publishers.
2Francis, G, Kerem, Z, Makkar, HPS, et al. (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88, 587605.
3William, EC Jr, Perez-Mellado, V, Vitt, LJ, et al. (2002) Behavioural response to plant toxins by two omnivorous lizard species. Physiol Behav 76, 297303.
4Applebaum, S, Marco, S & Birk, Y (1969) Saponins as possible factors of resistance of legume seeds to the attack of insects. J Agric Food Chem 17, 618622.
5Bowyer, P, Clarke, BR, Lunness, P, et al. (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267, 371374.
6Fenwick, GR, Price, KR, Tsukamoto, C, et al. (1991) Saponins. In Toxic Substances in Crop Plants, pp. 285327 [FelixD'Mello, JP, Duffus, CM and Duffus, JH, editors]. Cambridge: Royal Society of Chemistry.
7Hostettmann, K & Marston, A (1995) Saponins. Cambridge: Cambridge University Press.
8Sen, S, Makkar, HPS & Becker, K (1998) Alfalfa saponins and their implication in animal nutrition. J Agric Food Chem 46, 131140.
9Ishaaya, I, Birk, Y, Bondi, A, et al. (1969) Soyasaponins IX – studies of their effect on birds, mammals and cold-blooded organisms. J Sci Food Agric 20, 433436.
10Klita, PT, Mathison, GW, Fenton, TW, et al. (1996) Effects of alfalfa root saponins on digestive function in sheep. J Anim Sci 74, 11441156.
11Cheeke, PR (1971) Nutritional and physiological implications of saponins: a review. Can J Anim Sci 51, 621632.
12Maxwell, FG (1982) Current status of breeding for resistance to insects. J Nematol 1, 1423.
13Pedersen, MW, Barnes, DK, Sorensen, EL, et al. (1976) Effects of low and high saponin selection in alfalfa on agronomic and pest resistance traits and the interrelationship of these traits. Crop Sci 16, 193199.
14Shany, S, Gestetner, B, Birk, Y, et al. (1970) Lucerne saponins III. Effect of lucerne saponins on larval growth and their detoxification by various sterols. J Sci Food Agric 21, 508510.
15Su, HCF, Speirs, RD & Mahany, PG (1972) Toxic effects of soybean saponin and its calcium salt on the rice weevil. J Econ Entomol 65, 844847.
16Mazahery-Laghab, H & Gatehouse, JA (1997) Endogenous insect pest resistance factors; engineering for enhanced resistance. PhD Thesis, University of Durham, UK.
17Mazahery-Laghab, H (2004) The study of saponins from 3 cultivars of alfalfa shoots and roots in different growth stages. In Final Report. Hamedan: Bu-Ali Sina University.
18Navarro, P, Giner, RM, Recio, MC, et al. (2001) In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium. Life Sci (Pharmacology letters, Accelerated communication) 68, 11992306.
19Massiot, G, Lavaud, C, Guillaume, D, et al. (1988 b) Reinvestigation of the sapogenins and prosapogenins from alfalfa (Medicago sativa). J Agric Food Chem 36, 902909.
20Peri, I, Mor, U, Heftmann, E, et al. (1979) Biosynthesis of triterpenoid sapogenols in soybean and alfalfa seedlings. Phytochemistry 18, 16711674.
21Nowacki, E, Jurzysta, M & Dietrych-Szstak, D (1976) Biosynthesis of medicagenic acid in germinating alfalfa. Biochem Physiol Pflanzen 156, 183186.
22Osbourn, A, Bowyer, P, Lunness, P, et al. (1995) Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins. Mol Plant Microbe Interact 8, 971978.
23Kocacaliskan, I, Unver, MC & Terzi, I (2009) Effects of saponin allelochemical on amylase and polyphenol oxidase enzyme activities during germination seeds (Triticum durum cv. Altar). Fresenius Environ Bull 18, 249252.
24Huhman, DV & Sumner, LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago trunculata using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59, 347360.
25Agrell, J, Oleszek, W, Stochmal, A, et al. (2003) Herbivore-induced responses in alfalfa. J Chem Ecol 29, 303320.
26Oleszek, WA (1998) Composition and quantitation of saponins in alfalfa (Medicago sativa L.) seedlings. J Agric Food Chem 46, 960962.
27Goławska, S (2007) Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. J Chem Ecol 33, 15981606.
28Goławska, S, Leszczyński, B & Oleszek, W (2006) Effect of low and high-saponin lines of alfalfa on pea aphid. J Insect Physiol 52, 737743.
29Stochmal, A & Oleszek, W (2007) Seasonal and structural changes of flavones in alfalfa (Medicago sativa L.) aerial parts. J Food Agr Environ 5, 170174.
30Pecetti, L, Tava, A, Romani, M, et al. (2006) Variety and environment effects on the dynamics of saponins in lucerne (Medicago sativa L.). Eur J Agron 25, 187192.
31Tava, A, Odoardi, M & Oleszek, W (1999) Seasonal changes of saponin content in five alfalfa (Medicago sativa) cultivars. Agricuoltura Mediterranea 129, 111116.
32Burgos, NR & Talbett, RE (1999) Cultivar and age differences in the production of allelochemicals by Secale cereale. Weed Sci 47, 481485.
33Alzueta, C, Rebole, A, Barro, C, et al. (1995) Changing in nitrogen and carbohydrate fractions associated with the field drying of vetch (Vicia sativa L.). Anim Feed Sci Technol 52, 249255.
34Kalac, P, Price, KR & Fenwick, GR (1996) Changes in saponin content and composition during the ensilage of alfalfa (Medicago sativa L.). Food Chem 56, 377380.
35Kapusta, I, Janda, B, Stochmal, A, et al. (2005) Determination of saponins in aerial parts of Barrel medic (Medicago truncatula) by liquid chromatography-electrospray ionization/mass spectrometry. J Agric Food Chem 53, 76547660.
36Bialy, Z, Jurzysta, M, Oleszek, W, et al. (1999) Saponins in alfalfa (Medicago sativa L.) root and their structural elucidation. J Agric Food Chem 47, 31853192.
37Wobeto, C, Correa, AD, Abreu, CMP, et al. (2007) Antinutrients in the cassava (Manihot esculenta Crants) leaf powder at three stages of the plant. Ciencia e Tecnologia de Alimentos 27, 108112.
38Oleszek, WA & Stochmal, A (2002) Triterpenoid saponins and flavonoids in the seeds of Trifolium species. Phytochemistry 61, 165170.
39Goławska, S, Lukasik, I & Leszczynski, B (2008) Effect of alfalfa saponins and flavonoids on pea aphid. Entomol Exp Apl 128, 147153.
40Goławska, S & Łukasik, I (2009) Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid (Homoptera: Aphididae). Biologia 64, 377382.
41Blackman, RL & Eastop, VF (2000) Aphids on the World's Crops: An Introduction and Information Guide, 2nd ed., pp. 352353. Toronto: John Wiley & Son Limited.
42Yazdi-Samadi, B, Rezaei, AM & Vali-Zadeh, M (1997) Statistical Designs in Agricultural Researches. Tehran: Tehran University Publications.
43Massiot, G, Lavaud, C, Men-Oliver, LL, et al. (1988) Structural elucidation of alfalfa root saponins by Mass spectrometry and Nuclear magnetic resonance analysis. J Chem Soc Perkin Trans 1, 30713079.
44Tava, A, Oleszek, W, Jurzysta, M, et al. (1993) Alfalfa saponins and sapogenins: isolation and quantification in two different cultivars. Phytochem Anal 4, 269274.
45Yoshiki, Y, Kudou, S & Okubo, K (1998) Relationship between chemical structures and biological activities of triterpenoids saponins from soybean (Review). Biosci Biotechnol Biochem 59, 22912299.
46Gorski, PM, Miersch, J & Ploszynski, M (1991) Production and biological activity of saponins and canavanine in alfalfa seedling. J Chem Ecol 17, 11351143.
47Bagheri, M, Yazdi-Samadi, B, Mazahery-Laghab, H, et al. (2001) Quantitative and qualitative analysis of saponins in different varieties of alfalfa and their relationships with alfalfa weevil resistance (in Persian). J Agron Sci Iran 3, 5264.
48Pedersen, MW & Wang, L (1971) Modification of saponin content of alfalfa through selection. Crop Sci 11, 833835.
49Majak, W, Fesser, AC, Goplen, BP, et al. (1980) Relationship between ruminant bloat and composition of alfalfa herbage II. Saponins. Can J Anim Sci 60, 699708.
50Oleszek, WA (2002) Chromatographic determination of plant saponins (Review). J Chromatogr A 967, 147162.
51Price, KR, Johnson, IT & Fenwick, GR (1987) The chemistry and biological significance of saponins in foods and feeding stuffs. CRC Crit Rev Food Sci Nutr 26, 27135.
52Plummer, DT (1978) An Introduction to Practical Biochemistry, pp. 6198. London: McGraw-Hill .
53Oleszek, W & Jurzysta, M (1990) High-performance liquid chromatography of alfalfa root saponins. J Chromatogr 519, 109116.
54Nowacka, J & Oleszek, W (1992) High performance liquid chromatography of zanhic acid glycoside in alfalfa (Medicago sativa L.). Phytochem Anal 3, 227230.
55Oleszek, W (1988) Solid-phase extraction-fractionation of alfalfa saponins. J Sci Food Agric 44, 4349.
56Crombie, WML, Crombie, L, Green, JB, et al. (1986) Pathogenecity of “Take-All” fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 25, 20752083.
57Mahato, B, Sarkar, SK & Poddar, G (1988) Triterpenoid saponins (Review article number 38). Phytochemistry 27, 30373067.
58Jain, DC & Tripathi, AK (1991) Insect feeding-deterrent activity of some saponin glycosides. Phytother Res 5, 139141.
59Potter, DA & Kimmerer, TW (1989) Inhibition of herbivory on young holly leaves: evidence for the defensive role of saponins. Oecologia 78, 322329.
60Applebaum, SW, Gestetner, B & Birk, Y (1965) Physiological aspects of host specificity in the Bruchidae – IV. Developmental incompatibility of soybeans for Callosobruchus. J Insect Physiol 11, 611616.
61Adel, MM, Sehnal, F & Jurzysta, M (2000) Effects of alfalfa saponins on the moth Spodoptera littoralis. J Chem Ecol 26, 10651078.

Keywords

Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding

  • H. Mazahery-Laghab (a1), B. Yazdi-Samadi (a2), M. Bagheri (a3) and A. R. Bagheri (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed