Skip to main content Accessibility help
×
Home

Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

  • Julia Sauer (a1), Hyeran Jang (a1), Ella M. Zimmerly (a1), Kyong-chol Kim (a1) (a2), Zhenhua Liu (a1), Aurelie Chanson (a1), Donald E. Smith (a3), Joel B. Mason (a1), Simonetta Friso (a4) and Sang-Woon Choi (a1)...

Abstract

Older age, dietary folate and chronic alcohol consumption are important risk factors for the development of colon cancer. The present study examined the effects of ageing, folate and alcohol on genomic and p16-specific DNA methylation, and p16 expression in the murine colon. Old (aged 18 months; n 70) and young (aged 4 months; n 70) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18 % of energy), a Lieber-DeCarli diet with alcohol (18 %) and reduced folate (0·25 mg folate/l) or an isoenergetic control diet (0·5 mg folate/l) for 5 or 10 weeks. Genomic DNA methylation, p16 promoter methylation and p16 gene expression were analysed by liquid chromatography–MS, methylation-specific PCR and real-time RT-PCR, respectively. Genomic DNA methylation was lower in the colon of old mice compared with young mice (P < 0·02) at 10 weeks. Alcohol consumption did not alter genomic DNA methylation in the old mouse colon, whereas it tended to decrease genomic DNA methylation in young mice (P = 0·08). p16 Promoter methylation and expression were higher in the old mouse colon compared with the corresponding young groups. There was a positive correlation between p16 promoter methylation and p16 expression in the old mouse colon (P < 0·02). In young mice the combination of alcohol and reduced dietary folate led to significantly decreased p16 expression compared with the control group (P < 0·02). In conclusion, ageing and chronic alcohol consumption alter genomic DNA methylation, p16 promoter methylation and p16 gene expression in the mouse colon, and dietary folate availability can further modify the relationship with alcohol in the young mouse.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Sang-Woon Choi, fax +1 617 556 3234, email sang.choi@tufts.edu

References

Hide All
1 Cummings, JH & Bingham, SA (1998) Diet and the prevention of cancer. BMJ 317, 16361640.
2 Norat, T, Bingham, S, Ferrari, P, et al. (2005) Meat, fish, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. J Natl Cancer Inst 97, 906916.
3 Riboli, E & Norat, T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78, Suppl. 3, 559S569S.
4 Brown, LM (2005) Epidemiology of alcohol-associated cancers. Alcohol 35, 161168.
5 Morgan, TR, Mandayam, S & Jamal, MM (2004) Alcohol and hepatocellular carcinoma. Gastroenterology 127, Suppl. 1, S87S96.
6 Roy, HK, Gulizia, JM, Karolski, WJ, et al. (2002) Ethanol promotes intestinal tumorigenesis in the MIN mouse multiple intestinal neoplasia. Cancer Epidemiol Biomarkers Prev 11, 14991502.
7 Seitz, HK, Maurer, B & Stickel, F (2005) Alcohol consumption and cancer of the gastrointestinal tract. Dig Dis 23, 297303.
8 Seitz, HK & Stickel, F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7, 599612.
9 Lu, SC, Huang, ZZ, Yang, H, et al. (2000) Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am J Physiol Gastrointest Liver Physiol 279, G178G185.
10 Schalinske, KL & Nieman, KM (2005) Disruption of methyl group metabolism by ethanol. Nutr Rev 63, 387391.
11 Feinberg, AP, Gehrke, CW, Kuo, KC, et al. (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48, 11591161.
12 Guerrero-Preston, R, Santella, RM, Blanco, A, et al. (2007) Global DNA hypomethylation in liver cancer cases and controls: a phase I preclinical biomarker development study. Epigenetics 2, 223226.
13 Goelz, SE, Vogelstein, B, Hamilton, SR, et al. (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187190.
14 Choi, SW & Mason, JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130, 129132.
15 Razin, A & Shemer, R (1995) DNA methylation in early development. Hum Mol Genet 4, 17511755.
16 Liu, L, Wylie, RC, Andrews, LG, et al. (2003) Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 124, 989998.
17 Wilson, VL, Smith, RA, Ma, S, et al. (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262, 99489951.
18 Catania, J & Fairweather, DS (1991) DNA methylation and cellular ageing. Mutat Res 256, 283293.
19 Gloria, L, Cravo, M, Pinto, A, et al. (1996) DNA hypomethylation and proliferative activity are increased in the rectal mucosa of patients with long-standing ulcerative colitis. Cancer 78, 23002306.
20 Shukla, SD, Velazquez, J, French, SW, et al. (2008) Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 32, 15251534.
21 Keyes, MK, Jang, H, Mason, JB, et al. (2007) Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon. J Nutr 137, 17131717.
22 Richardson, B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2, 245261.
23 Issa, JP (2000) CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 249, 101118.
24 Esteller, M, Corn, PG, Baylin, SB, et al. (2001) A gene hypermethylation profile of human cancer. Cancer Res 61, 32253229.
25 Collins, CJ & Sedivy, JM (2003) Involvement of the INK4a/Arf gene locus in senescence. Aging Cell 2, 145150.
26 Krishnamurthy, J, Ramsey, MR, Ligon, KL, et al. (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453457.
27 Choi, SW, Friso, S, Dolnikowski, GG, et al. (2003) Biochemical and molecular aberrations in the rat colon due to folate depletion are age-specific. J Nutr 133, 12061212.
28 Jang, H, Mason, JB & Choi, SW (2005) Genetic and epigenetic interactions between folate and aging in carcinogenesis. J Nutr 135, Suppl. 12, 2967S2971S.
29 Lieber, CS, DeCarli, LM & Sorrell, MF (1989) Experimental methods of ethanol administration. Hepatology 10, 501510.
30 Tamura, T (1990) Microbiological assay of folates. In Folic Acid Metabolism in Health and Diseases, pp. 121137 [Picciano, MF, Stokstad, ELR and Gregory, JF III, editors]. New York: Wiley-Liss.
31 Friso, S, Choi, SW, Dolnikowski, GG, et al. (2002) A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem 74, 45264531.
32 Herman, JG, Graff, JR, Myohanen, S, et al. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93, 98219826.
33 Sharpless, NE, Bardeesy, N, Lee, KH, et al. (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 8691.
34 Lo, YM, Wong, IH, Zhang, J, et al. (1999) Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res 59, 38993903.
35 Suzuki, K, Suzuki, I, Leodolter, A, et al. (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9, 199207.
36 Choi, SW, Stickel, F, Baik, HW, et al. (1999) Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. J Nutr 129, 19451950.
37 Wilkinson, JA & Shane, B (1982) Folate metabolism in the ethanol-fed rat. J Nutr 112, 604609.
38 Frank, O & Baker, H (1980) Vitamin profile in rats fed stock or liquid ethanolic diets. Am J Clin Nutr 33, 221226.
39 Mason, JB & Choi, SW (2005) Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35, 235241.
40 Herman, JG, Merlo, A, Mao, L, et al. (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55, 45254530.
41 Krakowczyk, L, Strzelczyk, JK, Adamek, B, et al. (2008) Methylation of the MGMT and p16 genes in sporadic colorectal carcinoma and corresponding normal colonic mucosa. Med Sci Monit 14, BR219BR225.
42 Kim, BN, Yamamoto, H, Ikeda, K, et al. (2005) Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues. Int J Oncol 26, 12171226.
43 Stickel, F, Choi, SW, Kim, YI, et al. (2000) Effect of chronic alcohol consumption on total plasma homocysteine level in rats. Alcohol Clin Exp Res 24, 259264.
44 Pirola, RC & Lieber, CS (1972) The energy cost of the metabolism of drugs, including ethanol. Pharmacology 7, 185196.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed