Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T03:17:37.581Z Has data issue: false hasContentIssue false

Absorption kinetics of some carbohydrates in conscious pigs

2. Quantitative aspects

Published online by Cambridge University Press:  09 March 2007

A. A. Rerat
Affiliation:
Laboratoire de Physiologie de la Nutrition, Centre National de Recherches Zootechniques, INRA, 78350 Jouy-en-Josas, France
P. Vaissade
Affiliation:
Laboratoire de Physiologie de la Nutrition, Centre National de Recherches Zootechniques, INRA, 78350 Jouy-en-Josas, France
P. Vaugelade
Affiliation:
Laboratoire de Physiologie de la Nutrition, Centre National de Recherches Zootechniques, INRA, 78350 Jouy-en-Josas, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Concentrations of reducing sugars, glucose, fructose and lactic acid in blood obtained from arterial and portal catheters were measured together with the portal hepatic blood flow-rate for periods of 8–24 h in twenty-six unanaesthetized pigs (mean body-weight 51 kg). The animals received experimental meals containing different amounts (100–1600 g) of different sugars (glucose fifteen meals, sucrose twenty-four meals, lactose fourteen meals, maize starch nineteen meals) together with a protein–mineral–vitamin mixture (150 g) 6–8 d after implantation of the catheters and an electromagnetic flow probe.

2. Because the portal blood flow pattern did not differ between test meals, net absorption followed the same trends as for porto-arterial concentration differences (Rérat et al. 1984). Apart from lactose, the amounts of reducing sugars appearing in the portal vein correlated with the intake of the test meal, but the absorption pattern was different for each sugar. The appearance of reducing sugars was faster and earlier after intake of glucose than after sucrose and the same was the case for sucrose relative to maize starch. The differences between the three carbohydrates tended to increase with the level of intake.

3. With a test meal containing 1 kg carbohydrate, i.e. a normal meal in a 50 kg pig, digestion of sucrose and maize starch was not finished 8 h after the meal since only 60 and 52% respectively of their hydrolysis products were recovered in the portal blood. In the case of lactose, the amounts of reducing sugars appearing in the portal blood were always very small and constant (113–118 g within 8 h) whatever the level of intake, i.e. 30 and 15% of their hydrolysis products for intakes of 400 and 800 g respectively.

4. Depending on the carbohydrate ingested, the uptake of glucose by the gut cell wall ranged from 14 to 21 g/h and the production of lactic acid from 2.5 to 3.5 g/h.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

REFERENCES

Aherne, F., Hays, V. W., Ewan, R. C. & Speer, V. C. (1969). Journal of Animal Science 29, 444450.CrossRefGoogle Scholar
Aliev, A. A. (1970). Sel'sko-khozyaistvennaya. Biologiya, Moscou 5, 369401.Google Scholar
Auffray, P., Martinet, J. & Rérat, A. (1967). Annales de Biologie Animale, Biochimie, Biophysique 7, 261279.CrossRefGoogle Scholar
Berman, W. F., Bautista, J. O., Rogers, S. & Segal, S. (1976). Biochimica et Biophysica Acta 455, 90101.CrossRefGoogle Scholar
Cranwell, P. D., Noakes, D. E. & Hill, K. J. (1976). British Journal of Nutrition 6, 7186.CrossRefGoogle Scholar
Cuber, J. C., Laplace, J. P. & Villiers, P. A. (1980). Reproduction, Nutrition, Développement 20(4B), 1161–1172.CrossRefGoogle Scholar
Cunningham, H. M., Friend, D. W. & Nicholson, J. W. G. (1963). Canadian Journal of Animal Science 43, 215225.CrossRefGoogle Scholar
Dawson, R. & Porter, J. W. G. (1962). British Journal of Nutrition 16, 2738.CrossRefGoogle Scholar
Dencker, H., Lunderquist, A., Meeuwisse, G., Norryd, C. & Tranberg, K. G. (1972). Gastroenterology 7, 701705.Google Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968). American Journal of Physiology 215, 12601275.CrossRefGoogle Scholar
Etienne, M. (1969). Journées de la Recherche Porcine en France Vol. 1, pp. 131136. Paris: Institut National de la Recherche Agronomique, Institut Technique du Porc.Google Scholar
Fischer, R. A., Rosoff, B. M., Altshuler, J. G., Thayer, W. R. & Spiro, H. M. (1965). Cancer 18, 1278.3.0.CO;2-E>CrossRefGoogle Scholar
Gray, G. M. & Ingelfinger, F. J. (1966). Journal of Clinical Investigation 45, 388398.CrossRefGoogle Scholar
Haworth, J. C., Ford, J. D. & Robinson, T. J. (1965). Clinical Science 29, 8392.Google Scholar
Jorgensen, C. R., Landau, B. R. & Wilson, T. H. (1960). Federation Proceedings 19, 130 Abstr.Google Scholar
Keys, J. E. & de Barthe, J. V. (1974). Journal of Animal Science 39, 5762.CrossRefGoogle Scholar
Kiyasu, J. Y. & Chaikoff, I. L. (1957). Journal of Biological Chemistry 224,935939.CrossRefGoogle Scholar
Koo, C., Rogers, S. & Segal, S. (1975). Biology of the Neonate 27, 153162.CrossRefGoogle Scholar
Laplace, J. P. (1978). Annales de Zootechnie 27, 495517.CrossRefGoogle Scholar
Ly, J. (1975). Cuban Journal of Agricultural Science 9, 291298.Google Scholar
Mavrias, D. A. & Mayer, R. J. (1973). Biochimica et Biophysica Acta 291, 531537.CrossRefGoogle Scholar
Raulin, J., Loriette, C., Flanzy, J. & Rérat, A. (1966). Biochimica et Biophysica Acta 116, 385388.CrossRefGoogle Scholar
Rérat, A. (1971). Annales de Biologie Animale, Biochimie, Biophysique 11, 277.CrossRefGoogle Scholar
Rérat, A. (1981). Bulletin de l' Académie Nationale de Médecine 8, 5965.Google Scholar
Rérat, A. (1983). Bulletin de l' Académie Nationale de Médecine 14, 297302.Google Scholar
Rérat, A., Lisoprawski, C., Vaissade, P. & Vaugelade, P. (1979 a). Bulletin de l' Académie Vétérinaire de France 52,333346.CrossRefGoogle Scholar
Rérat, A., Vaissade, P. & Vaugelade, P. (1979 b). Annales de Biologie Animale, Biochimie, Biophysique 19,739747.CrossRefGoogle Scholar
Rérat, A., Vaissade, P. & Vaugelade, P. (1984). British Journal of Nutrition 51, 505515.CrossRefGoogle Scholar
Rérat, A., Vaugelade, P. & Villiers, P. A. (1980). In Current Concepts of Digestion and Absorption in Pigs. Technical Bulletin no. 3, pp. 177–214 [Low, A.G. and Partridge, I. G., editors]. Reading and Ayr: National Institute for Research in Dairying and Hannah Research Institute.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods pp. 593. Ames, Iowa: Iowa State University Press.Google Scholar
Talafantova, M. & Kolinska, J. (1977). Folia Biologica Czechoslovakia 23, 7680.Google Scholar
Windmueller, H. G. & Spaeth, A. E. (1978). Journal of Biological Chemistry 253, 6976.CrossRefGoogle Scholar