Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gbqfq Total loading time: 0.427 Render date: 2022-05-27T15:32:50.438Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Is adherence to the Mediterranean diet associated with healthy habits and physical fitness? A systematic review and meta-analysis including 565 421 youths

Published online by Cambridge University Press:  09 December 2020

Antonio García-Hermoso*
Affiliation:
Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008Pamplona, Spain Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, USACH, 71783-5Santiago, Chile
Yasmin Ezzatvar
Affiliation:
Department of Physiotherapy, Exercise Intervention for Health Research Group (EXINH-RG), Universitat de València, 46003Valencia, Spain
José Francisco López-Gil
Affiliation:
Departamento de Actividad Física y Deporte, Facultad de Ciencias del Deporte, Universidad de Murcia, 30720San Javier, Spain
Robinson Ramírez-Vélez
Affiliation:
Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008Pamplona, Spain
Jordi Olloquequi
Affiliation:
Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 3460000Talca, Chile
Mikel Izquierdo
Affiliation:
Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008Pamplona, Spain
*
*Corresponding author: Antonio García-Hermoso, email antonio.garciah@unavarra.es

Abstract

The relationship between adherence to the Mediterranean diet (MD), physical activity (PA), sedentary behaviour and physical fitness levels has been analysed in several studies; however, there is mixed evidence among youth. Thus, this study aimed to meta-analyse the associations between adherence to the MD, PA, sedentary behaviour and physical fitness among children and adolescents. Three databases were systematically searched, including cross-sectional and prospective designs with a sample of healthy youth aged 3–18 years. Random effects inverse-variance model with the Hartung–Knapp–Sidik–Jonkman adjustment was used to estimate the pooled effect size (correlation coefficient (r)). Thirty-nine studies were included in the meta-analysis, yielding a total of 565 421 youth (mean age, 12·4 years). Overall, the MD had a weak-to-moderate positive relationship with PA (r 0·14; 95 % CI 0·11, 0·17), cardiorespiratory fitness (r 0·22; 95 % CI 0·13, 0·31) and muscular fitness (r 0·11; 95 % CI 0·03, 0·18), and a small-to-moderate negative relationship with sedentary behaviour (r –0·15; 95 % CI –0·20, –0·10) and speed–agility (r –0·06; 95 % CI –0·12, –0·01). There was a high level of heterogeneity in all of the models (I2 ≥ 75 %). Overall, results did not remain significant after controlling for sex and age (children or adolescents) except for PA. Improving dietary habits towards those of the MD could be associated with higher physical fitness and PA in youth, lower sedentary behaviours and better health in general.

Type
Systematic Review and Meta-Analysis
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iaccarino Idelson, P, Scalfi, L & Valerio, G (2017) Adherence to the Mediterranean diet in children and adolescents: a systematic review. Nutr Metab Cardiovasc Dis 27, 283299.CrossRefGoogle ScholarPubMed
Martinez-Gonzalez, MA & Bes-Rastrollo, M (2014) Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr Opin Lipidol 25, 2026.CrossRefGoogle ScholarPubMed
Monteiro, CA, Moubarac, J-C, Cannon, G, et al. (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev 14, 2128.CrossRefGoogle ScholarPubMed
Tur, JA, Romaguera, D & Pons, A (2004) Food consumption patterns in a Mediterranean region: does the Mediterranean diet still exist? Ann Nutr Metab 48, 193201.CrossRefGoogle Scholar
Andersen, RE, Crespo, CJ, Bartlett, SJ, et al. (1998) Relationship of physical activity and television watching with body weight and level of fatness among children results from the third National Health and Nutrition Examination survey. J Am Med Assoc 279, 938942.CrossRefGoogle ScholarPubMed
Tomkinson, GR, Lang, JJ & Tremblay, MS (2019) Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br J Sports Med 53, 478486.CrossRefGoogle Scholar
Thivel, D, Aucouturier, J, Isacco, L, et al. (2013) Are eating habits associated with physical fitness in primary school children? Eat Behav 14, 8386.CrossRefGoogle ScholarPubMed
Cuenca-García, M, Ruiz, JR, Ortega, FB, et al. (2014) Association of breakfast consumption with objectively measured and self-reported physical activity, sedentary time and physical fitness in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 17, 22262236.CrossRefGoogle ScholarPubMed
Pearson, N & Biddle, SJH (2011) Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. Am J Prev Med 41, 178188.CrossRefGoogle ScholarPubMed
Rosi, A, Giopp, F, Milioli, G, et al. (2020) Weight status, adherence to the Mediterranean diet, physical activity level, and sleep behavior of Italian junior high school adolescents. Nutrients 12, 478.CrossRefGoogle ScholarPubMed
National Heart, Lung, and Blood Institute. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed March 2020).Google Scholar
Nieminen, P, Lehtiniemi, H, Vähäkangas, K, et al. (2013) Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol Biostat Public Health 10.Google Scholar
Peterson, RA & Brown, SP (2005) On the use of beta coefficients in meta-analysis. J Appl Psychol 90, 175181.CrossRefGoogle ScholarPubMed
Bring, J (1994) How to standardize regression coefficients. Am Stat 48, 209213.Google Scholar
McGrath, RE & Meyer, GJ (2006) When effect sizes disagree: the case of r and d. Psychol Methods 11, 386401.CrossRefGoogle ScholarPubMed
Fisher, DJ (2015) Two-stage individual participant data meta-analysis and generalized forest plots. Stata J 15, 369396.CrossRefGoogle Scholar
Higgins, J, Thompson, S, Deeks, J, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.CrossRefGoogle ScholarPubMed
Higgins, JPT & Thompson, SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21, 15391558.CrossRefGoogle ScholarPubMed
Egger, M, Smith, G, Schneider, M, et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629634.CrossRefGoogle ScholarPubMed
Arnaoutis, G, Georgoulis, M, Psarra, G, et al. (2018) Association of anthropometric and lifestyle parameters with fitness levels in Greek schoolchildren: results from the EYZHN Program. Front Nutr 5, 10.CrossRefGoogle ScholarPubMed
Galan-Lopez, P, Domínguez, R, Pihu, M, et al. (2019) Evaluation of physical fitness, body composition, and adherence to Mediterranean diet in adolescents from Estonia: the AdolesHealth study. Int J Environ Res Public Health 16, 4479.CrossRefGoogle ScholarPubMed
García-Hermoso, A, Vegas-Heredia, ED, Fernández-Vergara, O, et al. (2019) Independent and combined effects of handgrip strength and adherence to a Mediterranean diet on blood pressure in Chilean children. Nutrition 60, 170174.CrossRefGoogle ScholarPubMed
Grao-Cruces, A, Fernández-Martínez, A & Nuviala, A (2014) Association of fitness with life satisfaction, health risk behaviors, and adherence to the Mediterranean diet in Spanish adolescents. J Strength Cond Res 28, 21642172.CrossRefGoogle ScholarPubMed
Grao-Cruces, A, Nuviala, A, Fernández-Martínez, A, et al. (2015) Relationship of physical activity and sedentarism with tobacco and alcohol consumption, and Mediterranean diet in Spanish teenagers. Nutr Hosp 31, 16931700.Google ScholarPubMed
Grosso, G, Marventano, S, Buscemi, S, et al. (2013) Factors associated with adherence to the Mediterranean diet among adolescents living in Sicily, southern Italy. Nutrients 5, 49084923.CrossRefGoogle ScholarPubMed
Rosa Guillamón, A, Carrillo López, PJ, García Cantó, E, et al. (2019) Mediterranean diet, weight status and physical activity in schoolchildren of the Region of Murcia. Clin Investig Arterioscler 31, 17.Google ScholarPubMed
Rosa Guillamon, A, Garcia Canto, E, Rodríguez García, PL, et al. (2017) Physical activity, physical fitness and quality of diet in schoolchildren from 8 to 12 years. Nutr Hosp 34, 12921298.Google ScholarPubMed
Kontogianni, MD, Vidra, N, Farmaki, A-E, et al. (2008) Adherence rates to the Mediterranean diet are low in a representative sample of Greek children and adolescents. J Nutr 138, 19511956.CrossRefGoogle Scholar
Lazarou, C, Panagiotakos, DB & Matalas, AL (2009) Level of adherence to the Mediterranean diet among children from Cyprus: the CYKIDS study. Public Health Nutr 12, 9911000.CrossRefGoogle ScholarPubMed
López-Gil, JF, Brazo-Sayavera, J, García-Hermoso, A, et al. (2020) Adherence to Mediterranean diet related with physical fitness and physical activity in schoolchildren aged 6–13. Nutrients 12, 567.CrossRefGoogle ScholarPubMed
Arriscado, D, Muros, JJ, Zabala, M, et al. (2014) Factors associated with low adherence to a Mediterranean diet in healthy children in northern Spain. Appetite 80, 2834.CrossRefGoogle ScholarPubMed
Magriplis, E, Farajian, P, Pounis, GD, et al. (2011) High sodium intake of children through ‘hidden’ food sources and its association with the Mediterranean diet: the GRECO study. J Hypertens 29, 10691076.CrossRefGoogle ScholarPubMed
Martínez, E, Llull, R, Del Mar Bibiloni, M, et al. (2010) Adherence to the Mediterranean dietary pattern among Balearic Islands adolescents. Br J Nutr 103, 16571664.CrossRefGoogle ScholarPubMed
Mazaraki, A, Tsioufis, C, Dimitriadis, K, et al. (2011) Adherence to the Mediterranean diet and albuminuria levels in Greek adolescents: data from the Leontio Lyceum ALbuminuria (3L study). Eur J Clin Nutr 65, 219225.CrossRefGoogle Scholar
Mieziene, B, Emeljanovas, A, Novak, D, et al. (2019) The relationship between social capital within its different contexts and adherence to a Mediterranean diet among Lithuanian adolescents. Nutrients 11, 1332.CrossRefGoogle ScholarPubMed
Monjardino, T, Lucas, R, Ramos, E, et al. (2014) Associations between a priori-defined dietary patterns and longitudinal changes in bone mineral density in adolescents. Public Health Nutr 17, 195205.CrossRefGoogle ScholarPubMed
Moral García, JE, Agraso López, AD, Pérez Soto, JJ, et al. (2019) Physical activity practice according to adherence to the Mediterranean diet, alcohol consumption and motivation in adolescents. Nutr Hosp 36, 420427.Google ScholarPubMed
Muros, JJ, Cofre-Bolados, C, Arriscado, D, et al. (2017) Mediterranean diet adherence is associated with lifestyle, physical fitness, and mental wellness among 10-y-olds in Chile. Nutrition 35, 8792.CrossRefGoogle ScholarPubMed
Novak, D, Štefan, L, Prosoli, R, et al. (2017) Mediterranean diet and its correlates among adolescents in non-Mediterranean European countries: a population-based study. Nutrients 9, 177.CrossRefGoogle ScholarPubMed
Papadaki, S & Mavrikaki, E (2015) Greek adolescents and the Mediterranean diet: factors affecting quality and adherence. Nutrition 31, 345349.CrossRefGoogle Scholar
Peng, W, Goldsmith, R & Berry, EM (2017) Demographic and lifestyle factors associated with adherence to the Mediterranean diet in relation to overweight/obesity among Israeli adolescents: findings from the Mabat Israeli national youth health and nutrition survey. Public Health Nutr 20, 883892.CrossRefGoogle ScholarPubMed
Arcila-Agudelo, AM, Ferrer-Svoboda, C, Torres-Fernàndez, T, et al. (2019) Determinants of adherence to healthy eating patterns in a population of children and adolescents: evidence on the Mediterranean diet in the city of Mataró (Catalonia, Spain). Nutrients 11, 854.CrossRefGoogle Scholar
Roccaldo, R, Censi, L, D’Addezio, L, et al. (2014) Adherence to the Mediterranean diet in Italian school children (The ZOOM8 Study). Int J Food Sci Nutr 65, 621628.CrossRefGoogle Scholar
Santomauro, F, Lorini, C, Tanini, T, et al. (2014) Adherence to Mediterranean diet in a sample of Tuscan adolescents. Nutrition 30, 13791383.CrossRefGoogle Scholar
Tambalis, KD, Panagiotakos, DB, Moraiti, I, et al. (2018) Poor dietary habits in Greek schoolchildren are strongly associated with screen time: results from the EYZHN (National Action for Children’s Health) Program. Eur J Clin Nutr 72, 572580.CrossRefGoogle ScholarPubMed
Agostinis-Sobrinho, C, Santos, R, Rosário, R, et al. (2018) Optimal adherence to a Mediterranean diet may not overcome the deleterious effects of low physical fitness on cardiovascular disease risk in adolescents: a cross-sectional pooled analysis. Nutrients 10, 815.CrossRefGoogle Scholar
Chacón-Cuberos, R, Zurita-Ortega, F, Martínez-Martínez, A, et al. (2018) Adherence to the Mediterranean diet is related to healthy habits, learning processes, and academic achievement in adolescents: a cross-sectional study. Nutrients 10, 1566.CrossRefGoogle ScholarPubMed
Obradovic Salcin, L, Karin, Z, Miljanovic Damjanovic, V, et al. (2019) Physical activity, body mass, and adherence to the Mediterranean diet in preschool children: a cross-sectional analysis in the Split-Dalmatia County (Croatia). Int J Environ Res Public Health 16, 3237.CrossRefGoogle Scholar
Pino-Ortega, J, De La Cruz-Sánchez, E & Martínez-Santos, R (2010) Health-related fitness in school children: compliance with physical activity recommendations and its relationship with body mass index and diet quality. Arch Latinoam Nutr 60, 374379.Google ScholarPubMed
Cabanas-Sánchez, V, Martínez-Gómez, D, Izquierdo-Gómez, R, et al. (2018) Association between clustering of lifestyle behaviors and health-related physical fitness in youth: the UP&DOWN study. J Pediatr 199, 4148.e1.CrossRefGoogle ScholarPubMed
Manzano-Carrasco, S, Felipe, JL, Sanchez-Sanchez, J, et al. (2020) Weight status, adherence to the Mediterranean diet, and physical fitness in Spanish children and adolescents: the Active Health Study. Nutrients 12, 1680.CrossRefGoogle ScholarPubMed
Bawaked, RA, Gomez, SF, Homs, C, et al. (2018) Association of eating behaviors, lifestyle, and maternal education with adherence to the Mediterranean diet in Spanish children. Appetite 130, 279285.CrossRefGoogle ScholarPubMed
Bibiloni, MM, Pich, J, Córdova, A, et al. (2012) Association between sedentary behaviour and socioeconomic factors, diet and lifestyle among the Balearic Islands adolescents. BMC Public Health 12, 718.CrossRefGoogle Scholar
Farajian, P, Risvas, G, Karasouli, K, et al. (2011) Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: the GRECO study. Atherosclerosis 217, 525530.CrossRefGoogle ScholarPubMed
Fauquet, J, Sofi, F, López-Guimerà, G, et al. (2016) Adherencia a la dieta mediterránea en adolescentes catalanes: factores socioeconómicos y de estilo de vida (Mediterranean diet adherence among Catalonian adolescents: socio-economic and lifestyle factors). Nutr Hosp 3333, 12831290.Google Scholar
Galan-Lopez, P, Ries, F, Gisladottir, T, et al. (2018) Healthy lifestyle: relationship between Mediterranean diet, body composition and physical fitness in 13 to 16-years old Icelandic students. Int J Environ Res Public Health 15, 2632.CrossRefGoogle ScholarPubMed
Galan-Lopez, P, Sánchez-Oliver, AJ, Ries, F, et al. (2019) Mediterranean diet, physical fitness and body composition in Sevillian adolescents: a healthy lifestyle. Nutrients 11, 2009.CrossRefGoogle ScholarPubMed
Petrie, HJ, Stover, EA & Horswill, CA (2004) Nutritional concerns for the child and adolescent competitor. Nutrition 20, 620631.CrossRefGoogle ScholarPubMed
Kelishadi, R, Ardalan, G, Gheiratmand, R, et al. (2007) Association of physical activity and dietary behaviours in relation to the body mass index in a national sample of Iranian children and adolescents: CASPIAN Study. Bull World Health Organ 85, 1926.CrossRefGoogle Scholar
López-Gil, JF, Oriol-Granado, X, Izquierdo, M, et al. (2020) Healthy lifestyle behaviors and their association with self-regulation in Chilean children. Int J Environ Res Public Health 17, 5676.CrossRefGoogle ScholarPubMed
Leech, RM, McNaughton, SA & Timperio, A (2014) The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act 11, 4.CrossRefGoogle ScholarPubMed
O’Donoghue, G, Kennedy, A, Puggina, A, et al. (2018) Socio-economic determinants of physical activity across the life course: a ‘DEterminants of DIet and Physical ACtivity’ (DEDIPAC) umbrella literature review. PLOS ONE 13, e0190737.CrossRefGoogle Scholar
Shi, X, Tubb, L, Fingers, ST, et al. (2013) Associations of physical activity and dietary behaviors with children’s health and academic problems. J Sch Health 83, 17.CrossRefGoogle ScholarPubMed
Avery, A, Anderson, C & McCullough, F (2017) Associations between children’s diet quality and watching television during meal or snack consumption: a systematic review. Matern Child Nutr 13, e12428.CrossRefGoogle ScholarPubMed
Lobstein, T & Dibb, S (2005) Evidence of a possible link between obesogenic food advertising and child overweight. Obes Rev 6, 203208.CrossRefGoogle ScholarPubMed
Rey-López, JP, Vicente-Rodríguez, G, Biosca, M, et al. (2008) Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis 18, 242251.CrossRefGoogle ScholarPubMed
Peters, JL, Sutton, AJ, Jones, DR, et al. (2006) Comparison of two methods to detect publication bias in meta-analysis. J Am Med Assoc 295, 676680.CrossRefGoogle ScholarPubMed
García-Hermoso, A, Saavedra, JM, Ramírez-Vélez, R, et al. (2017) Reallocating sedentary time to moderate-to-vigorous physical activity but not to light-intensity physical activity is effective to reduce adiposity among youths: a systematic review and meta-analysis. Obes Rev 18, 10881095.CrossRefGoogle Scholar
Supplementary material: File

García-Hermoso et al. supplementary material

García-Hermoso et al. supplementary material
Download García-Hermoso et al. supplementary material(File)
File 2 MB
11
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Is adherence to the Mediterranean diet associated with healthy habits and physical fitness? A systematic review and meta-analysis including 565 421 youths
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Is adherence to the Mediterranean diet associated with healthy habits and physical fitness? A systematic review and meta-analysis including 565 421 youths
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Is adherence to the Mediterranean diet associated with healthy habits and physical fitness? A systematic review and meta-analysis including 565 421 youths
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *