Skip to main content Accessibility help
×
Home

Are long-term trends in Bewick’s Swan Cygnus columbianus bewickii numbers driven by changes in winter food resources?

  • KEVIN A. WOOD (a1), JULIA L. NEWTH (a1), KANE BRIDES (a1), MIKE BURDEKIN (a2), ANNE L. HARRISON (a1), STEVE HEAVEN (a1), CHARLIE KITCHIN (a3), LEIGH MARSHALL (a4), CARL MITCHELL (a1), JESSICA PONTING (a1), DAFILA K. SCOTT (a1), JON SMITH (a4), WIM TIJSEN (a5), GEOFF M. HILTON (a1) and EILEEN C. REES (a1)...

Summary

The north-west European population of Bewick’s Swan Cygnus columbianus bewickii declined by 38% between 1995 and 2010 and is listed as ‘Endangered’ on the European Red List of birds. Here, we combined information on food resources within the landscape with long-term data on swan numbers, habitat use, behaviour and two complementary measures of body condition, to examine whether changes in food type and availability have influenced the Bewick’s Swan’s use of their main wintering site in the UK, the Ouse Washes and surrounding fens. Maximum number of Bewick’s Swans rose from 620 in winter 1958/59 to a high of 7,491 in winter 2004/05, before falling to 1,073 birds in winter 2013/14. Between winters 1958/59 and 2014/15 the Ouse Washes supported between 0.5 and 37.9 % of the total population wintering in north-west Europe (mean ± 95 % CI = 18.1 ± 2.4 %). Swans fed on agricultural crops, shifting from post-harvest remains of root crops (e.g. sugar beet and potatoes) in November and December to winter-sown cereals (e.g. wheat) in January and February. Inter-annual variation in the area cultivated for these crops did not result in changes in the peak numbers of swans occurring on the Ouse Washes. Behavioural and body condition data indicated that food supplies on the Ouse Washes and surrounding fens remain adequate to allow the birds to gain and maintain good body condition throughout winter with no increase in foraging effort. Our findings suggest that the recent decline in numbers of Bewick’s Swans at this internationally important site was not linked to inadequate food resources.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Are long-term trends in Bewick’s Swan Cygnus columbianus bewickii numbers driven by changes in winter food resources?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Are long-term trends in Bewick’s Swan Cygnus columbianus bewickii numbers driven by changes in winter food resources?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Are long-term trends in Bewick’s Swan Cygnus columbianus bewickii numbers driven by changes in winter food resources?
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence; e-mail: kevin.wood@wwt.org.uk

References

Hide All
Amat, J. A. and Green, A. J. (2010) Waterbirds as bioindicators of environmental conditions. Pp. 4552 in Hurford, C., Schneider, M. and Cowx, I., eds. Conservation monitoring in freshwater habitats. Dordrecht, The Netherlands: Springer.
Barton, K. (2012) MuMIn: Model selection and model averaging based on information criteria. R package version 1.13.4. Accessible at https://CRAN.R-project.org/package=MuMIn.
Bates, D., Mächler, M., Bolker, B. M. and Walker, S. C. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Software 67: 148. Accessible at https://CRAN.R-project.org/package=lme4.
BirdLife International (2015) European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities.
Black, J. M. and Rees, E. C. (1984) The structure and behaviour of the Whooper Swan population wintering at Caerlaverock, Dumfries and Galloway, Scotland: an introductory study. Wildfowl 35: 2136.
Bowler, J. M. (1994) The condition of Bewick’s Swans Cygnus columbianus bewickii in winter as assessed by their abdominal profiles. Ardea 82: 241248.
Burton, N. H., Rehfisch, M. M., Clark, N. A. and Dodd, S. G. (2006) Impacts of sudden winter habitat loss on the body condition and survival of redshank Tringa totanus. J. Appl. Ecol. 43: 464473.
Cadbury, C. J. (1975) Populations of swans at the Ouse Washes, England. Wildfowl 26: 148159.
Christensen, R. H. B. (2018) Package ‘ordinal’. R package version 2018.4-19. Accessible at https://CRAN.R-project.org/package=ordinal.
Davis, J. B., Guillemain, M., Kaminski, R. M., Arzel, C., Eadie, J. M. and Rees, E. C. (2014) Habitat and resource use by waterfowl in the northern hemisphere in autumn and winter. Wildfowl Special Issue No. 4: 1769.
Department for Environment, Food and Rural Affairs (2017) Statistical data set: Structure of the agricultural industry in England and the UK at June. London, UK: Department for Environment, Food and Rural Affairs. https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
Dirksen, S., Beekman, J. H. and Slagboom, T. H. (1991) Bewick’s Swans Cygnus columbianus bewickii in the Netherlands: numbers, distribution and food choice during the wintering season. Wildfowl Supplement No. 1: 228237.
Evans, M. E. and Kear, J. (1978) Weights and measurements of Bewick’s Swans during winter. Wildfowl 29: 118122.
Frost, T. M., Austin, G. E., Calbrade, N. A., Mellan, H. J., Hearn, R. D., Stroud, D. A., Wotton, S. R. and Balmer, D. E. (2017) Waterbirds in the UK 2015/16: The Wetland Bird Survey. Thetford, UK: British Trust for Ornithology, the Royal Society for the Protection of Birds and the Joint Nature Conservation Committee, in association with the Wildfowl and Wetlands Trust. Accessible at http://www.bto.org/volunteer-surveys/webs/publications/webs-annual-report
Hoare, J. M., Pledger, S., Keall, S. N., Nelson, N. J., Mitchell, N. J. and Daugherty, C. H. (2006) Conservation implications of a long-term decline in body condition of the Brothers Island tuatara (Sphenodon guntheri). Anim. Conserv. 9: 456462.
Inger, R., Harrison, X. A., Ruxton, G. D., Newton, J., Colhoun, K., Gudmundsson, G. A., McElwaine, G., Pickford, M., Hodgson, D. and Bearhop, S. (2010) Carry-over effects reveal reproductive costs in a long-distance migrant. J. Anim. Ecol. 79: 974982.
Laubek, B. (1995) Habitat use by Whooper Swans Cygnus cygnus and Bewick’s Swans Cygnus columbianus bewickii wintering in Denmark: increasing agricultural conflicts. Wildfowl 46: 815.
Litvin, K. and Vangeluwe, D. (2016) The Bewick’s Swan is a paradox. Swan News 12: 12.
McFadden, D. (1973) Conditional logit analysis of qualitative choice behavior. Pp. 105142 in Zarembka, P., ed. Frontiers in econometrics. New York, USA: Academic Press.
Meek, E. R. (1993) Population fluctuations and mortality of Mute Swans on an Orkney loch system in relation to a Canadian pondweed growth cycle. Scot. Birds 17: 8592.
Meier-Peithmann, W. (2011) Change of feeding ecology of Whooper Swan, Bewick’s Swan and Mute Swan Cygnus cygnus, C. bewickii, C. olor during the period 1965-2010 at the Dannenberger Elbbogen (N Germany). Vogelwelt 132: 5779.
Merne, O. J. (1972) Bewick’s Swans feeding on waste potatoes and other agricultural crops. Brit. Birds 65: 394395.
Nakagawa, S. and Schielzeth, H. (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Method. Ecol. Evol. 4: 133142.
Nagy, S., Petkov, N., Rees, E. C., Solokha, A., Hilton, G., Beekman, J. and Nolet, B. (2012) International Single Species Action Plan for the Conservation of the Northwest European Population of Bewick’s Swan (Cygnus columbianus bewickii). AEWA Technical Series No. 44. Bonn, Germany: AEWA. Accessible at http://www.unep-aewa.org/sites/default/files/publication/ts44_ssap_bewicks_swan.pdf
Newton, I. (1980) The role of food in limiting bird numbers. Ardea 68: 1130.
Newton, I. (2013) Bird populations. London, UK: Harper Collins.
Noordhuis, R., van der Molen, D. T. and van den Berg, M. S. (2002) Response of herbivorous water-birds to the return of Chara in Lake Veluwemeer, The Netherlands. Aquat. Bot. 72: 349367.
Owen, M. and Cadbury, C. J. (1975) The ecology and mortality of swans at the Ouse Washes, England. Wildfowl 26: 3142.
Owen, M. and Kear, J. (1972) Food and feeding habits of swans. Pp. 5877 in Scott, P. and The Wildfowl Trust, eds. The swans. London, UK: Michael Joseph.
Owen, M., Wells, R. L. and Black, J. M. (1992) Energy budgets of wintering barnacle geese: the effects of declining food resources. Ornis Scand. 23: 451458.
Peig, J. and Green, A. J. (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118: 18631891.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team (2017) nlme: Linear and nonlinear mixed effects models. R package version 3.1-131. Accessible at https://CRAN.R-project.org/package=nlme.
Ponting, J. (2014) Factors affecting the feeding distribution of Bewick’s (Cygnus columbianus bewickii) and Whooper (Cygnus cygnus) Swans wintering on the Ouse Washes, Norfolk. BSc. Thesis. Cardiff, UK: Cardiff University, School of Biosciences.
Poorter, E. P. R. (1991) Bewick’s Swans Cygnus columbianus bewickii, an analysis of breeding success and changing resources. Lelystad, the Netherlands: Ministerie van Verkeer en Waterstaat, Rijkswaterstaat, Directie Flevoland.
R Development Core Team (2018) R: a language and environment for statistical computing. [3.5.1]. Vienna, Austria: R Foundation for Statistical Computing. Accessible at http://www.R-project.org/
Rees, E. C. (2006) Bewick’s swan. London, UK: T. and A. D. Poyser.
Rees, E. C. and Beekman, J. H. (2010) Northwest European Bewick’s Swans: a population in decline. Br. Birds 103: 640650.
Rees, E. C., Kirby, J. S. and Gilburn, A. (1997) Site selection by swans wintering in Britain and Ireland; the importance of habitat and geographic location. Ibis 139: 337352.
Richards, S. A., Whittingham, M. J. and Stephens, P. A. (2011) Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65: 7789.
Scott, D. K. (1978) Social behaviour of wintering Bewick’s Swans. PhD thesis. Cambridge, UK: University of Cambridge.
Sherry, T. W., Johnson, M. D. and Strong, A. M. (2005) Does winter food limit populations of migratory birds. Pp. 414425 in Greenberg, R. and Marra, P. P., eds. Birds of two worlds: The ecology and evolution of migration. Baltimore, USA: Johns Hopkins University Press.
Siriwardena, G. M., Calbrade, N. A. and Vickery, J. A. (2008) Farmland birds and late winter food: does seed supply fail to meet demand? Ibis 150: 585595.
Stillman, R. A., Wood, K. A., Gilkerson, W., Elkinton, E., Black, J. M., Ward, D. H. and Petrie, M. (2015) Predicting effects of environmental change on a migratory herbivore. Ecosphere 6: art. 114.
Tijsen, W. and Koffijberg, K. (2015) Thirty years of goose and swan counts in the north of the province of Noord-Holland. Limosa 88: 8395.
van Gils, J. A. and Tijsen, W. (2007) Short-term foraging costs and long-term fueling rates in central-place foraging swans revealed by giving-up exploitation times. Am. Nat. 169: 609620.
Wahl, J. and Degen, A. (2009) Rastbestand und Verbreitung von Singschwan Cygnus cygnus und Zwergschwan C. bewickii im Winter 2004/05 in Deutschland. Vogelwelt 130: 124.
Warton, D. I., Duursma, R. A., Falster, D. S. and Taskinen, S. (2012) smatr 3 – an R package for estimation and inference about allometric lines. Method. Ecol. Evol. 3: 257259. Accessible at https://CRAN.R-project.org/package=smatr
Wood, K. A., Newth, J. L., Hilton, G. M., Nolet, B. A. and Rees, E. C. (2016) Inter-annual variability and long-term trends in breeding success in a declining population of migratory swans. J. Avian Biol. 47: 597609.
Wood, K. A., Nuijten, R. J. M., Newth, J. L., Haitjema, T., Vangeluwe, D., Ioannidis, P., Harrison, A. L., Mackenzie, C., Hilton, G. M., Nolet, B. A. and Rees, E. C. (2018a) Apparent survival of an Arctic breeding migratory bird over 44 years of fluctuating population size. Ibis 160: 413430.
Wood, K. A., Newth, J. L., Hilton, G. M. and Rees, E. C. (2018b) Has winter body condition varied with population size in a long-distance migrant, the Bewick’s Swan (Cygnus columbianus bewickii)? Eur. J. Wildlife Res. 64: 38.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed