Skip to main content Accessibility help
×
Home

From continuous magnitudes to symbolic numbers: The centrality of ratio

  • Pooja G. Sidney (a1), Clarissa A. Thompson (a1), Percival G. Matthews (a2) and Edward M. Hubbard (a2)

Abstract

Leibovich et al.'s theory neither accounts for the deep connections between whole numbers and other classes of number nor provides a potential mechanism for mapping continuous magnitudes to symbolic numbers. We argue that focusing on non-symbolic ratio processing abilities can furnish a more expansive account of numerical cognition that remedies these shortcomings.

Copyright

References

Hide All
Barth, H. C. & Paladino, A. M. (2011) The development of numerical estimation: Evidence against a representational shift. Developmental Science 14(1):125–35. doi: 10.1111/j.1467-7687.2010.00962.x.
DeWolf, M., Grounds, M. A., Bassok, M. & Holyoak, K. J. (2014) Magnitude comparison with different types of rational numbers. Journal of Experimental Psychology: Human Perception and Performance 40(1):7182. doi: 10.1037/a0032916.
Gallistel, C. R. & Gelman, R. (2000) Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences 4(2):5965. doi: 10.1016/S1364-6613(99)01424-2.
Halberda, J. & Feigenson, L. (2008) Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology 44(5):1457–65. doi: 10.1037/a0012682.
Henik, A. & Tzelgov, J. (1982) Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition 10(4):389–95. doi: 10.3758/BF03202431.
Jacob, S. N. & Nieder, A. (2009) Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience 30(7):1432–42. doi: 10.1111/j.1460-9568.2009.06932.x.
Jacob, S. N., Vallentin, D. & Nieder, A. (2012) Relating magnitudes: The brain's code for proportions. Trends in Cognitive Sciences 16(3):157–66. doi: 10.1016/j.tics.2012.02.002.
Leibovich, T., Kallai, A. & Itamar, S. (2016a) What do we measure when we measure magnitudes? In: Continuous issues in numerical cognition, ed. Henik, A., pp. 355–73. Elsevier. doi: 10.1016/B978-0-12-801637-4.00016-0.
Matthews, P. G. & Chesney, D. L. (2015) Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology 78:2856. doi: 10.1016/j.cogpsych.2015.01.006.
Matthews, P. G. & Lewis, M. R. (2016) Fractions we cannot ignore: The nonsymbolic ratio congruity effect. Cognitive Science. Available online. doi: 10.1111/cogs.12419.
Matthews, P. G., Lewis, M. R. & Hubbard, E. M. (2016) Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science 27(2):191202. doi: 10.1177/0956797615617799.
McCrink, K. & Wynn, K. (2007) Ratio abstraction by 6-month-old infants. Psychological Science 18(8):740–45. doi: 10.1111/j.1467-9280.2007.01969.x.
Moyer, R. S. & Landauer, T. K. (1967) Time required for judgements of numerical inequality. Nature 215(5109):1519–20. doi: 10.1038/2151519a0.
Piazza, M. (2010) Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences 14(12):542–51. doi: 10.1016/J.Tics.2010.09.008.
Siegler, R. S., Thompson, C. A. & Schneider, M. (2011) An integrated theory of whole number and fractions development. Cognitive Psychology 62(4):273–96. Available at: https://doi.org/10.1016/j.cogpsych.2011.03.001.
Thompson, C. A. & Opfer, J. E. (2010) How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development 81(6):1768–86. doi: 10.1111/j.1467-8624.2010.01509.x.
Vallentin, D. & Nieder, A. (2008) Behavioral and prefrontal representation of spatial proportions in the monkey. Current Biology 18(18):1420–25. doi: 10.1016/j.cub.2008.08.042.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed