Hostname: page-component-6d856f89d9-jhxnr Total loading time: 0 Render date: 2024-07-16T07:16:09.111Z Has data issue: false hasContentIssue false

Why language survives as the dominant communication tool: A neurocognitive perspective

Published online by Cambridge University Press:  30 September 2021

Qing Zhang
Affiliation:
Department of Psychology, Sun Yat-Sen University, Guangzhou510006, Chinazhangqing3@mail.sysu.edu.cn
Edward Ruoyang Shi
Affiliation:
Department of Catalan Philology and General Linguistics, University of Barcelona, Gran Via de Les Corts Catalanes, 585, 08007Barcelona, Spain. edwardshiruoyangend@gmail.com; http://departament-filcat-linguistica.ub.edu/directori-organitzatiu/edward-ruoyang-shi

Abstract

By focusing on the contributions of subcortical structures, our commentary suggests that the functions of the hippocampus underlying “displacement,” a feature enabling humans to communicate things and situations that are remote in space and time, make language more effective at social bonding. Based on the functions of the basal ganglia and hippocampus, evolutionary trajectory of the subcomponents of music and language in different species will also be discussed.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bickerton, D. (2009). Adam's tongue. Hill and Wang.Google Scholar
Brown, S. (2000). The “musilanguage” model of musical evolution. In Wallin, N. L., Merker, B., & Brown, S. (Eds.), The origins of music (pp. 271300). MIT Press.Google Scholar
Buckley, M. J., & Gaffan, D. (2000). The hippocampus, perirhinal cortex, and memory in the monkey. In Bolhuis, J. J. (Ed.), Brain, perception, and memory: Advances in cognitive neuroscience (pp. 279298). Oxford University Press.CrossRefGoogle Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272274. https://doi.org/10.1038/26216.CrossRefGoogle ScholarPubMed
Covington, N. V., & Duff, M. C. (2016). Expanding the language network: Direct contributions from the hippocampus. Trends in Cognitive Sciences, 20(12), 869870.CrossRefGoogle ScholarPubMed
Crystal, J. D., & Smith, A. E. (2014). Binding of episodic memories in the rat. Current Biology, 24(24), 29572961. https://doi.org/10.1016/j.cub.2014.10.074.CrossRefGoogle ScholarPubMed
De Waal, F., & Ferrari, P. F. (2010). Towards a bottom-up perspective on animal and human cognition. Trends Cognitive Science, 14, 201207.CrossRefGoogle ScholarPubMed
Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology, 35(1), 86104. https://doi.org/10.1038/npp.2009.126.CrossRefGoogle ScholarPubMed
Ergorul, C., & Eichenbaum, H. (2004). The hippocampus and memory for “what,” “where,” and “when.” Learning & Memory, 11(4), 397405. https://doi.org/10.1101/lm.73304.CrossRefGoogle Scholar
Fitch, W. T. (2015). Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140091. https://doi.org/10.1098/rstb.2014.0091.CrossRefGoogle ScholarPubMed
Gould, K. L., Gilbertson, K. E., Hrvol, A. J., Nelson, J. C., Seyfer, A. L., Brantner, R. M., & Kamil, A. C. (2013). Differences in relative hippocampus volume and number of hippocampus neurons among five corvid species. Brain Behavior and Evolution, 2013(81), 5670.CrossRefGoogle Scholar
Grahn, J. A. (2009). The role of the basal ganglia in beat perception: Neuroimaging and neuropsychological investigations. Annals of the New York Academy of Sciences, 1169, 3545. http://doi.org/10.1111/j.1749-6632.2009.04553.x.CrossRefGoogle ScholarPubMed
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science (New York, N.Y.), 298(5598), 15691579. https://doi.org/10.1126/science.298.5598.1569.CrossRefGoogle ScholarPubMed
Hockett, C. F. (1960). The origin of speech. Scientific American, 203(3), 8996. https://doi.org/10.1038/scientificamerican0960-88.CrossRefGoogle Scholar
Jarvis, E. D. (2007). Neural systems for vocal learning in birds and humans: A synopsis. Journal of Ornithology, 148(Suppl. 1), S3544. https://doi.org/10.1007/s10336-007-0243-0.CrossRefGoogle ScholarPubMed
Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896910. https://doi.org/10.1016/j.tics.2018.08.002.CrossRefGoogle ScholarPubMed
Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13(2), 331340. https://doi.org/10.1007/s10071-009-0282-4.CrossRefGoogle ScholarPubMed
Olsen, R. K., Moses, S. N., Riggs, L., & Ryan, J. D. (2012). The hippocampus supports multiple cognitive processes through relational binding and comparison. Frontiers in Human Neuroscience, 6, 146.CrossRefGoogle ScholarPubMed
Patel, A. D. (2008). Music, language, and the brain. Oxford University Press.Google Scholar
Ravignani, A., Dalla Bella, S., Falk, S., Kello, C. T., Noriega, F., & Kotz, S. A. (2019). Rhythm in speech and animal vocalizations: A cross-species perspective. Annals of the New York Academy of Sciences, 1453, 7998. https://doi.org/10.1111/nyas.14166.CrossRefGoogle ScholarPubMed
Shi, E. R., & Zhang, Q. (2020). A domain-general perspective on the role of the basal ganglia in language and music: Benefits of music therapy for the treatment of aphasia. Brain and Language, 206, 104811.CrossRefGoogle ScholarPubMed
Tulving, E. (1983) Elements of episodic memory. Oxford University Press.Google Scholar
Tulving, E. (2001). Episodic memory and common sense: How far apart? Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1413), 15051515.CrossRefGoogle ScholarPubMed
Zhang, E. Q., & Alamri, S. (2016). Revisiting the role of the hippocampus in vocal learning. Ducog 2016, Dubrovnik, Croatia.Google Scholar