Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T22:19:10.316Z Has data issue: false hasContentIssue false

Beyond “consistent with” adaptation: Is there a robust test for music adaptation?

Published online by Cambridge University Press:  30 September 2021

Parker Tichko
Affiliation:
Department of Music, Northeastern University, Boston, MA02115, USAp.tichko@northeastern.edu
Kevin A. Bird
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI48823, USAbirdkevi@msu.edu Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI48823, USA
Gregory Kohn
Affiliation:
Department of Psychology, University of North Florida, Jacksonville, FL32224, USAgregory.kohn@unf.edu

Abstract

In their article, Mehr et al. conclude that the design features of music are consistent with adaptations for credible signaling. Although appealing to design may seem like a plausible basis for identifying adaptations, probing adaptive theories of music must be done at the genomic level and will require a functional understanding of the genomic, phenotypic, and fitness properties of music.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, R. D. H., & Hoekstra, H. E. (2011). Molecular spandrels: Tests of adaptation at the genetic level. Nature Reviews. Genetics, 12(11), 767780.CrossRefGoogle Scholar
Clark, A. G., Glanowski, S., Nielsen, R., Thomas, P. D., Kejariwal, A., Todd, M. A.…, (2003). Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science (New York, N.Y.), 302(5652), 19601963.CrossRefGoogle ScholarPubMed
Demuth, J. P., & Hahn, M. W. (2009). The life and death of gene families. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 31(1), 2939.CrossRefGoogle ScholarPubMed
Fisher, S. E. (2017). Evolution of language: Lessons from the genome. Psychonomic Bulletin & Review, 24(1), 3440.CrossRefGoogle ScholarPubMed
Fitch, W. T., Huber, L., & Bugnyar, T. (2010). Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron, 65(6), 795814.CrossRefGoogle ScholarPubMed
Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society, 205(1161), 581598.Google Scholar
Hahn, M. W., De Bie, T., Stajich, J. E., Nguyen, C., & Cristianini, N. (2005). Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Research, 15(8), 11531160.CrossRefGoogle ScholarPubMed
Järvelä, I. (2019). Genomics approaches for studying musical aptitude and related traits. In Thaut, M. H. & Hodges, D. A. (Eds.), The Oxford handbook of music and the brain(pp. 439458). Oxford University Press.Google Scholar
Jensen, J. D., Payseur, B. A., Stephan, W., Aquadro, C. F., Lynch, M., Charlesworth, D., & Charlesworth, B. (2019). The importance of the neutral theory in 1968 and 50 years on: A response to Kern and Hahn 2018. Evolution; International Journal of Organic Evolution.CrossRefGoogle ScholarPubMed
Lynch, M. (2007). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences of the United States of America, 104(Suppl. 1), 85978604.CrossRefGoogle ScholarPubMed
McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351(6328), 652654.CrossRefGoogle Scholar
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S.…, Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468), 957970. https://doi.org/10.1126/science.aax0868.CrossRefGoogle ScholarPubMed
Nei, M., Suzuki, Y., & Nozawa, M. (2010). The neutral theory of molecular evolution in the genomic era. Annual Review of Genomics and Human Genetics, 11, 265289.CrossRefGoogle ScholarPubMed
Nielsen, R. (2005). Molecular signatures of natural selection. Annual Review of Genetics, 39, 197218.CrossRefGoogle ScholarPubMed
Nielsen, R. (2009). Adaptionism-30 years after Gould and Lewontin. Evolution; International Journal of Organic Evolution, 63(10), 24872490.CrossRefGoogle ScholarPubMed
Oldham, M. C., Horvath, S., & Geschwind, D. H. (2006). Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 1797317978.CrossRefGoogle ScholarPubMed
Peretz, I., Cummings, S., & Dubé, M.-P. (2007). The genetics of congenital amusia (tone deafness): A family-aggregation study. American Journal of Human Genetics, 81(3), 582588.CrossRefGoogle ScholarPubMed
Pfenning, A. R., Hara, E., Whitney, O., Rivas, M. V., Wang, R., Roulhac, P. L., … & Jarvis, E. D. (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds. Science (New York, N.Y.), 346(6215), 1256846.CrossRefGoogle ScholarPubMed
Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., … & Wang, J. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science (New York, N.Y.), 339(6118), 456460.CrossRefGoogle ScholarPubMed
Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., … & Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science (New York, N.Y.), 346(6215), 13111320.CrossRefGoogle ScholarPubMed