Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T10:58:47.724Z Has data issue: false hasContentIssue false

Solvability of some Abel-type integral equations involving the Gauss hypergeometric function as kernels in the spaces of summable functions

Published online by Cambridge University Press:  17 February 2009

R. K. Raina
Affiliation:
Department of Mathematics, College of Technology and Agricultural Engineering, Rajasthan Agricultural University, Udaipur 313001, Rajasthan, India. e-mail: raina_rk@yahoo.com
H. M. Srivastava
Affiliation:
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada. e-mail: hmsri@uvvm.uvic.ca
A. A. Kilbas
Affiliation:
Department of Mathematics and Mechanics, Belarusian State University, 220050 Minsk, Belarus. e-mail: kilbas@mmf.bsu.unibel.by
M. Saigo
Affiliation:
Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan. e-mail: msaigo@fukuoka-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is devoted to the study of the solvability of certain one-and multidimensional Abel-type integral equations involving the Gauss hypergeometric function as their kernels in the space of summable functions. The multidimensional equations are considered over certain pyramidal domains and the results obtained are used to present the multidimensional pyramidal analogues of generalized fractional calculus operators and their properties.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Appell, P. and Kampé de Fériet, J., Fonctions hypergéométriques et hypersphériques. Polynômes d'Hermite (Gauthier-Villars, Paris, 1926).Google Scholar
[2]Braaksma, B. L. J. and Schuitman, A., “Some classes of Watson transforms and related integral equations for generalized functions”, SIAM J. Math. Anal. 7 (1976) 771796.Google Scholar
[3]Brychkov, Yu. A., Glaeske, H.-J. and Marichev, O. I., “Factorization of integral transformations of convolution type”, Itogi Nauk. Tekh. 21 (1983) 341, (Russian).Google Scholar
[4]Brychkov, Yu. A., Glaeske, H.-J., Prudnikov, A. P. and Tuan, Vu Kim, Multidimensional integral transformations (Gordon and Breach, Melbourne, 1992).Google Scholar
[5]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher transcendental functions, Vol. 1 (McGraw-Hill, New York, 1953).Google Scholar
[6]Higgins, T. P., “A hypergeometric integral transform”, J. Soc. Industr. Appl. Math. 12 (1964) 601612.Google Scholar
[7]Kilbas, A. A., Saigo, M. and Repin, O. A., “Solution in closed form of boundary value problem for degenerate equation of hyperbolic type”, Kyungpook Math. J. 36 (1996) 261273.Google Scholar
[8]Kilbas, A. A., Saigo, M. and Takushima, H., “On integrable solution of a multidimensional Abel-type integral equation”, Fukuoka Univ. Sci. Rep. 25 (1995) 19.Google Scholar
[9]Love, E. R., “Some integral equations involving hypergeometric functions”, Proc. Edinburgh Math. Soc. (2) 15 (1967) 169198.Google Scholar
[10]Love, E. R., “Two more hypergeometric integral equations”, Proc. Cambridge Philos. Soc. 63 (1967) 10551076.Google Scholar
[11]Love, E. R., “A hypergeometric integral equation”, in Fractional calculus and its applications, Lecture Notes in Math. 457, (Springer, New York, 1975) 272288.CrossRefGoogle Scholar
[12]Marichev, O. I., Handbook of integral transforms and higher transcendental functions: Theory and algorithmic tables (Halsted Press (Ellis Horwood Ltd, Chichester), John Wiley and Sons, New York, 1983).Google Scholar
[13]McBride, A. C., “Solution of hypergeometric integral equation involving generalized functions”, Proc. Edinburgh Math. Soc. (2) 19 (1975) 265285.Google Scholar
[14]Prabhakar, T. R., “A class of integral equations with Gauss functions in the kernels”, Math. Nachr. 52 (1972) 7183.Google Scholar
[15]Raina, R. K., “A note on multidimensional modified fractional calculus operators”, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) 155162.Google Scholar
[16]Repin, O. A., “Boundary value problem for an equation of moisture transfer”, Differentsial'nye Uravneniya 26 (1990) 169171, (Russian).Google Scholar
[17]Repin, O. A., “Nonlocal boundary value problems for parabolic-hyperbolic equation with the characteristic line of change”, Differentsial'nye Uravneniya 28 (1992) 173176, (Russian).Google Scholar
[18]Repin, O. A., Boundary value problems with shift for equations of hyperbolic and mixed type, (Russian) (Saratov Univ., Saratov, 1992).Google Scholar
[19]Repin, O. A., “A non local boundary value problem for a degenerate hyperbolic equation”, Dokl. Acad. Nauk 335 (1994) 295296, (Russian); English transl. Russian Acad. Sci. Dokl. Math. 49 (1994), 319–321.Google Scholar
[20]Saigo, M., “A remark on integral operator involving the Gauss hypergeometric functions”, Math. Rep. Kyushu Univ. 11 (1978) 135143.Google Scholar
[21]Saigo, M., “A certain boundary value problem for the Euler-Darboux equation“, Math. Japon. 24 (1979) 377385.Google Scholar
[22]Saigo, M., “A certain boundary value problem for the Euler-Darboux equation. II”, Math. Japon. 25 (1980) 211220.Google Scholar
[23]Saigo, M., “A certain boundary value problem for the Euler-Darboux equation. III”, Math. Japon. 26 (1981) 103119.Google Scholar
[24]Saigo, M., Kilbas, A. A. and Takushima, H., “On multidimensional pyramidal fractional integrals and derivatives”, in Complex analysis in several variables (ed. Rassias, Th. M.), (Hadronic Press, Florida, in press).Google Scholar
[25]Saigo, M., Repin, O. A. and Kilbas, A. A., “On a non-local boundary value problem for an equation of mixed parabolic-hyperbolic type”, Internat. J. Math. Statist. Sci. 5 (1996) 116.Google Scholar
[26]Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional integrals and derivatives: Theory and applications (Gordon and Breach, Yverdon (Switzerland), 1993).Google Scholar
[27]Saxena, R. K. and Kumbhat, R. K., “A generalization of Kober operators”, Vijnana Parishad Anusandhan Patrika 16 (1973) 3136.Google Scholar
[28]Smimov, M. M., “A solution in closed form of the Volterra equation with a hypergeometric function in the kernel”, Differentsial'nye Uravneniya 18 (1982) 171173, (Russian).Google Scholar
[29]Srivastava, H. M. and Buschman, R. G., Theory and applications of convolution integral equations (Kluwer Academic Publ., Dordrecht, 1992).Google Scholar
[30]Srivastava, H. M. and Karlsson, P. W., Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications (Ellis Horwood, Chichester; Halsted Press (John Wiley and Sons), New York, 1985).Google Scholar
[31]Srivastava, H. M. and Saigo, M., “Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation”, J. Math. Anal. Appl. 121 (1987) 325369.Google Scholar
[32]Tuan, Vu Kim, Raina, R. K. and Saigo, M., “Multidimensional fractional calculus operators involving the Gauss hypergeometric function”, Internat. J. Math. Statist. Sci. 5 (1996) 141160.Google Scholar
[33]Volkodavov, V. F. and Repin, O. A., “A boundary value problem for the Euler-Darboux equation with positive parameter”, Differentsial'nye Uravneniya 19 (1982) 12751277, (Russian).Google Scholar