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SOLVABILITY OF SOME ABEL-TYPE INTEGRAL EQUATIONS
INVOLVING THE GAUSS HYPERGEOMETRIC FUNCTION AS

KERNELS IN THE SPACES OF SUMMABLE FUNCTIONS
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(Received 30 May 1998)

Abstract

This paper is devoted to the study of the solvability of certain one- and multidimensional
Abel-type integral equations involving the Gauss hypergeometric function as their kernels
in the space of summable functions. The multidimensional equations are considered over
certain pyramidal domains and the results obtained are used to present the multidimensional
pyramidal analogues of generalized fractional calculus operators and their properties.

1. Introduction

One-dimensional Abel-type integral equations involving the Gauss hypergeometric
function F(a, b;c;z) [5, Section 2.1] as kernel have been studied by many authors
([2,3,6,9-14,20], [26, Section 35.1], [27,28]; see also [29]). Such equations arise in
the boundary value problems for the Euler-Darboux equation with boundary conditions
involving generalized fractional integro-differential operators ([7,16-19,21-23,25,
28,31,33]). One such multidimensional integral equation of non-convolution type
was investigated in [4, Section 4.6.2]. In the above papers, the integral operators
of the equations considered were represented as compositions of simpler fractional
integral operators with power weights. On the basis of these representations and the
known properties of fractional calculus operators, the sufficient conditions for the
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solvability of the integral equations were given and their inversion formulas were
obtained in some function spaces.

The investigation of the necessary and sufficient conditions for the solvability of
the above equations is more difficult. This problem is closely connected with the
characterization of the images of the corresponding integral operators. The classical
Tamarkin's statement [26, Section 2.2] on the solvability of the Abel-type integral
equation in the space Lt(a,b) of summable functions is known. A similar result
for the multidimensional Abel-type integral equations over pyramidal domains was
proved in [8]. Multidimensional type fractional calculus operators were also studied
in [15] and [32].

The present paper is devoted to the investigation of the aforementioned results for
certain one- and multidimensional integral equations with the Gauss hypergeometric
function as their kernels. The one-dimensional equation happens to be the equation
which was first considered in [20], and the multidimensional one is taken over a
pyramidal domain in IR". Section 2 contains some preliminary information. Sections 3
to 5 deal with the solvability of one-dimensional Abel-type integral equations in the
space of summable functions. The criterion for solvability of multidimensional Abel-
type integral equations over pyramidal domains in the space of summable functions
is given in Section 6. Section 7 is devoted to the discussion of the conditions of
solvability of such multidimensional Abel-type integral equations. On the basis of the
results in Sections 6 and 7, the generalized fractional integral and differential operators
are introduced and their properties are investigated systematically in Section 8.

2. Preliminaries

Let N be the set of positive integers and No = N U {0}. Also let R and C be the
sets of real and complex numbers, respectively. For z e C and n e No, we denote by
(z)n the Pochhammer symbol [5, Section 2.2.1] defined by

( z ) o = l . (z)n = z(z + l ) . . - ( z + « - l ) = ^ y ^ p ( z e C ; n e N 0 ) , (2 .1 )

where F(z) is the Gamma function [5, Section 1.1]. In terms of this relation, the
Gauss hypergeometric function F(a, b; c; z) is defined by

F(a, b;c;z) = 2F,(g, b;c;z) = f ] ( ^ " W " -. {a, b, c e C; | z | < 1), (2.2)

with the corresponding analytic continuation

F(a,b;c;z) = „„„/ ,, / t"-\\ - ty-»-\\ - tzY"dt (2.3)
• b) Jo
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for z e C (I arg(l - z)\ < re; z ^ 1) and 0 < Re (6) < Re (c) (see [5, 2.1 (2) and
2.1 (10)]). When z = 1, we have the Gauss summation theorem [5, 2.3 (9)]:

, - l , - 2 , . . . ) . (2.4)

The asymptotic behaviour of F(a, b;c;z) at infinity is given by ([12, (5.6)] and [5,
2.3 (9)])

F(a,b;c;z) = XiZ-a + X2z-b+O(z-a-l) + O(z-'"i) (z -»• oo), (2.5)

when a — & is not an integer, with the addition of log z near z~a or near z~b in the case
of integer a-b.We shall also use the relations [5, 2.4 (2), 2.4 (3), 2.1 (22)]:

F(a,b;c;x)= _ . , . _ ; ' , . / ^"'(1 - s)c-k-lF(a, b\\\sx)ds; (2.6)
r(A)r(c — K) j 0

F(C) ' i - " 1 " - 1 " 1 " -sxy°F{a-a',b;k\.

(2.7)
l-sx

F(a, b;c;x) = (1 - x)"aF L c - fe; c; - ^ - j - ^ . (2.8)

Let SI = [a, £] be a finite interval of the real axis R. We denote by A C(Q) the
space of absolutely continuous functions on £1. It is known from [26, Section 1.1]
that AC (SI) coincides with the space of primitives of Lebesgue summable functions
on SI, that is,

f(x)€AC(Sl) *=* f(x) = c+ f <p(t)dt (J \<p(t)\dt< ooY (2.9)

We denote by OS" (n e N) the ̂ -dimensional Euclidean space. Let* = (JCI , . . . , xn) e
W and t = (f,,... , tn) G K". Then we define

a: t =

In particular, for 1 = ( 1 , . . . ,1)

and

x > t means X\ > t\,... , xn > tn,
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and similarly for the inequality symbols <, ^ and ^ . We denote by R+ and RZ. the
subsets of R" defined by Rn

+ = {x e R" : x > 0) and W_ = {* e R" : x < 0},
respectively. Let

* = ( * „ . . . , * „ ) € NS s No x ••• x No (*, e No (i = 1 , . . . , n))

be multi-index with *! = k,l • • • kn\ and \k\ = it, H h *„. For x e R", it € NJ and

a = ( a i , . . . ,<*„) 6 Hi;, let

(x)* = (*,)*,•••(*,)*., x * = < ' •••<",

91*1 (2.10)
D =(3^)^(3^ "* rw-w-rta.).

Let A = ||ayi|| (ayt 6 R) be a matrix of order n x n with its determinant |A| =
det/4 = 1, Oj = (flyi,,... , a;n) be its line vectors, and let 5,-,- be the elements of the
inverse matrix A"1. We shall also use the notation [26, Section 28.4]:

A-x = (ai-x,... ,anx), (A • x ) " = (a,-x)"'•••(<!,, • * ) " ' . (2.11)

For b = ( 6 , , . . . , bn) € R", c = ( c , , . . . , cn) e K" and r € R1, we denote by

Ac.rib) = U e R" : A • (* - 0 ^ 0, c • f + r ^ 0} (2.12)

the n-dimensional bounded pyramid in K" with its vertex at the point b, with its base
on the hyperplane c • t + r = 0 and with lateral faces situated on the hyperplanes

aj(b-t) = O (j=l,...,n).

In particular, if A = E = \\Sjk\\ is a unit matrix and c = 1 = ( 1 , . . . , 1) and r = 0,
then (2.12) is the simplest model pyramid

E1(b) = [t e Rn:t <:b, I t ^ 0}. (2.13)

For a = ( a , , . . . . a . ) , 0 = ( /? , , . . . , ft), y = (y, y.) e K" and x =
(JCI, . . . , xn) e R", we denote by F[a, /S; y ; JC] the function

F{aj,Pj\Yj\Xj). (2.14)

;='

If a = ( a , , . . . ,an) € Rn,* = (6, bn) e R \ c € R1 and* = (*,, . . . ,xn) € R",
then the Lauricella multiple hypergeometric series is defined by [30, p. 33]

FB(a,b;c;x) === F^\au... ,an,bx bn;c;xx xn)

K.n.•I+-+*.

(max{|jc, | , . . . , \xn\] < 1). When n = 2, F™(a,, a2, bu b2;c\xx,x2) coincides with
the Appell double hypergeometric series F3(ai,a2. bu b2\c;x\,x2) (see [30, p. 23]).
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3. Solution of the one-dimensional Abel-type
hypergeometric integral equation

(x) ̂  ^ P f\x - tY-'F (a, {>; y; —
r(y) Ja \ x-a

We consider the integral equation:

\ ' ( ) <p(t) dt

= f(x) (x>a) (3.1)

with or, P e K1 and y e Rl
+ (0 < y < 1). This equation generalizes the classical

Abel equation [26, Section 2], which is obtained from (3.1) in the special case when
a = 0. The equation (3.1) was first investigated in [20] with a, ft and y being replaced
by a + ft, —t) and a, respectively, and its solution was obtained in the form:

-y)dx I Ja

(3.2)

Formally, such a solution can be found in the following way. If we suppose that
(3.1) is solvable, then replacing x by t and t by r, and multiplying both sides of the
resulting equation by

(x - tYYF (-a, \+p-r,\-Y\
\\ x-a

and then integrating over (a, x), we have

I (x - t)~yF (-a, \+p-y;\-y; ^—^] (t - a)'" dt
Ja V x-a)

x J {t - z)r-lF (a, fi; y\ '-^-^\ <p{x) dx

= r(y) I ( j c - o - ^ f - o , I + P-Y\1-Y;—-)f(t)dt. (3.3)
Ja V x-a)

Interchanging the order of integration in the left-hand side of (3.3) and making the
change of variables t = r + (1 — s)(x — r), we rewrite the left-hand side of (3.3) in
the form:

a,p\Y\- 777 r- )F [-a, l+p-Y;\ - y;s )ds,
1 -s(x-x)/(x -a) ) \ x-a)
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which, in view of (2.7), yields

B(y, 1 - y)(x - ay f F (o, 1 + fi - y; 1;^^-) <p(z)dx
Ja \ x-a)

= T{y)Y{\ - y)(x - a)-a f <p(z)dT.
Ja

Therefore, (3.3) is rewritten as follows:

/

* (x — aY f* / x — t\
<p{x)dx=K \ hx-trrFl-a,\+p-y;l-y; 1/(0^. (3.4)

r(i-y)ya \ x-a)

From (3.4) we obtain the solution cp(x) of (3.1) in the form (3.2).

REMARK 1. It is directly checked that the above result remains valid for the equation
obtained from (3.1) by replacing (x — a) by (x — h) with h ^ a, that is, if the integral
equation:

= f(x) (x>a) (3.5)

with a, ft e OS1, y e R\. (0 < y < 1) and h ̂  a is solvable, then its solution (p(x) is
given by

J (x-t)-rF(-a,l+P-y\l-y-,j^\f(t)dt\. (3,

4. Solvability of the one-dimensional Abel-type
hypergeometric integral equation

.6)

To obtain the solvability conditions of (3.1), we put

The following preliminary assertion holds true.
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LEMMA 1. Letf(t) e Ly(a, b), a, fi € R\ 0 < y < 1. Let further

f (t) = O((t - ay) (t^a) (4.2)

with n > max{0, 0 — a] — 1, and

f (t) = 0({b - t)v) (*->&) (4.3)

with v > y - 2. Thenf^{x) e L,(a, fc).

PROOF. Using (4.1) and interchanging the order of integration, we have

* 1 fb

/
*
«"

x (x-a)a(x-t)~vF[-a, 1+yS-y; 1-y; dx. (4.4)

To evaluate the inner integral, we make the change of variable T = (b — x)/{b — t)
and apply (2.7) by putting a = —a, fe = 2 + )3 — y , c = 2 — y,a' = —a and X = 1.
Thus we obtain

j {x - a)a(x - t)~YF (-a, \ + p - Y ; \ - Y \ j ^ dx

-<, , 2 + fi.y:2.-ytzi). (4.5,
b-a)

Then, according to (2.8), we find that

f fa
r
+

ali(x)dx= I F*afsO)dt, (4.6)
J a J a

where

1
" aY{b ~ ty~Yf (~a> ~̂ ; 2 " y; " 7 ^ ) f (°-

From (2.5) and (4.2) we obtain the following asymptotic behaviour of FZ+p(t) near
t = a:

FY
a+

a\t) = O((t - aV) + O((t- ay*-?) 0 -* a)

in the case of noninteger a — /J, and with the addition of log(f — a) for integer a — /}.
Equation (4.3) gives the asymptotics near t = b:

FaT
0O) =O((b- t)v+1-r) (x -> b).
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•y.cfiSo fg+ (x) is integrable on {a, b) and according to (4.6) we have

\f{t)\dt<oo. (4.7)

Hence / / + ( * ) e L\(a, b). This completes the proof of Lemma 1.

THEOREM 2. The Abel-type integral equation (3.1) with real a, ft and 0 < y < 1
is solvable in Li(a, b) if and only if

f:iafi(x)€AC([a,b]) and

Under these conditions, (3.1) /uz.s a unique solution given by (3.2).

(4.8)

PROOF. TO prove the necessity part, let (3.1) be solvable in Lx{a, b). Then all steps
described above are true in which the change of the order of integration in (3.3) is
justified by Fubini's theorem. Thus (3.4) is valid. Hence (4.8) follows from (3.4) if
we take (2.9) into account. To prove the sufficiency part, let the conditions in (4.8)
hold true. Then

-^-f L{(a,b),

in view of (4.6) and (4.7). Therefore, the function given by (3.2) exists almost
everywhere and belongs to Li (a, b). We show that it is a solution of (3.1). Substituting
cp(x) from (3.2) into the left-hand side of (3.1) and denoting the resulting expression
by g(x),we have

(x - j\x - \ y\ = g(x). (4.9)

This is an integral equation of the form (3.1) involving the prescribed function
(fa+"'fi(x))'- It is certainly solvable, and so by (3.2) we have

x f\x - t)-*F (-a, 1 + p - y; 1 - y; j ^ - 0 g(t) dt\

(4.10)
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where ga+'fi(x) is expressed similarly to (4.1). This shows that//.;0 p(x) and gy+ 'p(x)
differ by a constant k, that is, fy+p(x) - gY

a+\x) = k. But fjf+'fi(a) = 0 by
hypothesis and gl+'p(a) = 0, because (4.9) is a solvable equation. Hence k = 0 and
therefore

r,r a)\ \ (* - O1"' F (-a, 1 + p - y;\ - y,?—l\\f (t) - g(t)]dt = 0.

This is an equation of the form (3.1) and the uniqueness of its solution leads to the
result / (t) = g(t). The proof of Theorem 2 is thus completed.

REMARK 2. By replacing x - a by x - h (h ^ a), (4.1) takes the form:

'- ( 4 ' n )

Then, in accordance with Remark 1 in Section 3, the following statements are valid,
where each can be proved along the lines of our proofs of Lemma 1 and Theorem 2.

LEMMA 3. Letf(t) e Lt(a, b), a, fi € K1, 0 < y < 1. Let further

f (t) = O((t - hY) (t^h) (4.12)

with ix > — 1 for h < a and \x > max[0, ft — a] — 1 for h = a, and

f (t) = O((b - t)v) (t^b) (4.13)

with v > Y - 2. Then fa
y
+

af(x) eL\(a,b).

THEOREM 4. The Abel-type integral equation (3.5) with real a, ft, 0 < y < 1 and
h ^ a is solvable in L\(a,b) if and only if

fa
y
+

af(x)eAC([a,b]) and fa
Y;a

h
fi(a) = 0. (4.14)

Under these conditions, (3.5) has a unique solution given by (3.6).

5. Sufficient conditions for the solvability of the one-dimensional
Abel-type hypergeometric integral equation

The criterion for the solvability of the Abel-type hypergeometric integral equation
(3.1) is obtained in Theorem 2 in terms of the auxiliary function fa+"'0(x). The result
below gives simple sufficient conditions in terms of the function f (x) itself. To prove
such a result, we need the following assertion.
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LEMMA 5. Letf(x) e AC([a, b}) and let a,P,y € K1 such that

0 < y < 1, y - a - l < / 3 < l + a and y<l+a. (5.1)

Thenfff'Qc) e AC([a, b\) and

^ ) ^ ) ^ . (5.2)

PROOF. Since, by hypothesis, / ( r ) € AC([a, b\), and in view of (2.9), f (t) is
representable in the form:

f(t)=f(a)+ f f'(r)dx. (5.3)
Ja

Substituting this relation into (4.1), we have

( t t ) d t

/2(JC). (5.4)

According to (2.6) and (2.4), we evaluate /I(A:) by changing the variable
s = (x — t)/(x — a) as follows:

(x - a)a~Y+l

— (x-a)a-y+if(a) (5.5)

taking the conditions 0 < y < 1 and 1 + a — /J > 0 in (5.1) into account. As for
h(x), after interchanging the order of integration and evaluating the inner integral by
using (2.6) again, we obtain

J (X - t)~yF (-a, l+p-y;l-y; ^—± j dt

https://doi.org/10.1017/S1446181100013080 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013080


[11] Solvability of some Abel-type integral equations 301

By (5.5), Ii(x) is an absolutely continuous function because

(x - a ) a - y + l = ( a - y + l ) f ( t - a)a~y d t (5.7)

and (r — a)a'y € Lt(a, b), by the condition a — y + 1 > 0 in (5.1). To prove that
h{x) € A C([a, b]), we first note that, in accordance with (2.5), the Gauss function in
the last integrand of (5.6) has the following asymptotics near x = a:

(-<X, ^ (x -* a) (5.8)

for noninteger a + P — y, and with the addition of log(x — a) in the case of integer
a + fi-y. Therefore, I2(a) = 0 by the condition a + fi-y + l > 0 in (5.1). So we
can represent h(x) in the form:

I2(x)= [ h(t)dt or h(x) = ^-!2(x). (5.9)
Ja dx

By using (2.2) and term-by-term differentiation, which can be justified under the
conditions in (5.1), it is easily verified that

r( i
-a)a [x ( x - t \
—— / (x-tyyF - a , l+p-y;l-y; / '
-y)Ja \ x-a)

. (5.10)

It follows on the pattern of proofs of (4.6) and (4.7) that

f hl(x)dx= f gl(t)dt, f h2(x)dx= I g2(t)dt,
Ja Ja Ja Ja

t - a)"-\b - tf-yF(\ - a, l - p-,3 - y; -
-y) V t-a

and

f \hdx)\ dx ^ — i f (t- a)°(b - ty~y

Ja ^(2 - y) Ja

(-a, -P; 2-y; - ^ ) I/'(OI dt < oo,
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-b

\f\t)\dt< OO.

Hence h(x) € Lx(a,b) and I2(x) is also an absolutely continuous function in accor-
dance with (5.9) and fa+'P{x) € AC([a, b)). The representation (5.2) follows from
(5.4) to (5.6). This completes the proof of Lemma 5.

COROLLARY 6. Under the conditions of Lemma 3, fZ+P(a) = 0.

The following result gives a new form of the inversion formula of (3.1) applicable
to absolutely continuous functions.

THEOREM 7. Let f (x) € A C([a, b]) and leta,fi,y € K1 such that the conditions
in (5.1) are satisfied. Then the Abel-type hypergeometric equation (3.1) is solvable in
Li(a, b) and its solution (3.2) can be expressed in the form:

u(x—aY C / x t \
^._ \ /(jc-0'~yf(l-tt,l+jS-y;2-y; )f'(t)dt. (5.11)
r(2-y) y V /

x—t\
-y;2-y; )f'(

PROOF. By Umma 5 and Corollary 6,f^(x) € AC([o, &]) and /£"^(a) = 0.
So the conditions (4.8) of Theorem 2 are satisfied and (3.1) is solvable in L\{a,b).

Since <p(x) = (//+"'^00 j , (5.11) is obtained by differentiating (5.2) and using (5.4)

to (5.7) and (5.9) to (5.10). Theorem 7 is thus proved.

REMARK 3. The results in Lemmas 1,3 and 5 and Theorems 2,4 and 7 generalize
the corresponding statements for the classical Abel integral equation studied in [26,
Section 2.2].

REMARK 4. The results of Sections 4 and 5 given in Theorems 2, 4 and 7 (in
particular, a new form (5.11) for the solution of (3.1)), can be used to solve other
similar types of integral equations involving the modified and particular forms of the
Gauss hypergeometric function F(a, b;c;z) (see [26] and [29]). For example, if we
replace a by a + 0, y by a and £ by — rj in (3.1), we obtain the equation:

f(x) (5.12)
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with the generalized fractional integral operator / " / ' V introduced in [20] (see also
[26, p. 439]). Theorems 2 and 4 with the above specializations yield new forms
of results concerning the solvability of the integral equation (5.12). They can be
applied in solving those boundary value problems where such equations arise (see
[7,16-19,21-23,25,28,31] and [33]).

6. Solution of the multidimensional
Abel-type hypergeometric integral equation

In this and the next sections we shall use the notation introduced in Section 2. Let
A = \\ajk\\ (ajk € IR ̂ beamatrixof order n xn with its determinant | A | = detA = 1.
Also let Acr{b) (b, c e R"; r € R1) be a pyramid defined by (2.12). Letx, t, h, a, 0,
y € K" and F[a, /5; y;A • (x - t)/A • (x - h)] be defined by (2.14). We define the
Abel-type hypergeometric integral equation on Acr(b) by

(6.1)

with 0 < y < 1. This equation generalizes the multidimensional Abel-type integral
equation [26, Section 28.4], which is obtained from (6.1) in the special case when
r = 0 and a = 0 or /? = 0. To solve (6.1), we apply the method used in Section 3.
We replace x by t and t by T in (6.1), multiply the resulting equation by

and integrate over the pyramid Ac,r(x). Applying a known result [26, Lemma 28.3],
we have

-j- I <p(T)dr I (A-(x-t)yy{A-(t-T))y-l(A(t-h)y
* (y) JAc.r(i) Ja{x.x)

-u \-y i

' A-(x-h)
f (t) dt, (6.2)

where

a(x, T) = {/ € K" : A • r ^ A • < <| A • * } . (6.3)
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To evaluate the inner integral in (6.2), we change the variables as follows:

Sj = a • (x - T ) ' Uj = {Oju ' ' ' ' ajn) 0" = 1. • • • . « ) •

Then, by taking into account the equality 1 — s, = [a; • (t — r)]/[aj • (x — r ) ] and
(2.7), the inner integral can be evaluated as

= r(y)r(l - y)(A • (x - h))~aF [o, 1 + p - y; 1;
L

Hence (6.2) yields

Let x + r/{nc) = (x\ + r/(nc{),... , jcn + r/{ncn)). Making the change of variables
([26, p. 572] and [8, (2.6)]) by means of

x + r/(nc) = A~l • (y/d), t + r/(nc) = A'1 • (r/d), (6.5)

where

y/d = {yx/du . . . , yn/dn) e R-, d = A~l • c,

we find that (6.4) becomes

(6.6)

where the model pyramid Et(x) is given by (2.13),

7 = '
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To invert (6.6), we follow the steps used in [26, p. 573] (see also [4, p. 274]) and
rewrite (6.6) in the form:

(6.8)/ dzn / rfrB_, • - - /
J-(yi+-+yn-\) J-(yi+-+yn-2+rJ J-(v2+-+rj

Differentiating successively with respect to yn, yn-i, • • • , y\, we obtain

_3_ _ _d_ _d_

by dy\ dyn

Here we return to the variable x = A~l • (y/d) — r/(nc) similarly to (6.5), so that

(6.9)

(6.10)

where ajk (J,k = 1 , . . . , n) represent the elements of the inverse matrix A~l. So,
finally, we have from (6.4), (6.6), (6.7), (6.9) and (6.10) the inversion for the solution
<o(*)of(6.1):

- or
[\ f(t)dt\. (6.11)

To formulate the conditions of solvability for (6.1) in the space L\{Acr{b)) of
summable functions, we define the space of functions ([26, p. 574] and [8, p. 3])

= \g:g{x)
/ AC.A-* )
' A-(b-t)>A-(x-t)

h(t)dt, h(t) e (6.12)

This space plays the same role for the multidimensional integral equation (6.1) as
the space AC([a, b]) does for the one-dimensional integral equation (3.1). It may be
noted that, if g e IA{r(Li), then the partial derivatives of g(x) up to the order n exist
almost everywhere and

where 5yt (y, /t = 1 , . . . , « ) are elements of the inverse matrix A'1. In particular,
when A = E is the unit matrix, c = 1 = ( 1 , . . . ,1) and r = 0, (6.12) and (6.13) take
the forms:

g • g(x)
v . , . . "S /

h(t)dt, h(t) e L,(£,(*)) (6.14)
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d d d
—g(x) = - — g(x) = h(x),
dx dxi dxn

[16]

(6.15)

respectively. The following result, which can be proved just as Theorem 2 on the basis
of (6.4) and (6.12), gives the corresponding multidimensional pyramidal analogue of
Theorem 2.

THEOREM 8. The multidimensional Abel-type hypergeometric integral equation
(6.1) with a, 0, h, y g R" (0 < y < 1) is solvable in L,(Ac,r(6)) if and only if

(A • (x -h))" f , ._«
V

 r(1_ " J (A • (x - 0) '
x F [-«, 1 + p - y; 1 - y; A '\[* ~ ̂  1 / (0 dt e /Atf(L,) (6.16)

L A • (x — n) J
and

c-Jt+r=O

(6.17)
cx+r=0

Under these conditions, (6.1) has a unique solution given by (6.11).

COROLLARY 9. The multidimensional 'model' Abel-type hypergeometric integral
equation:

^ll^y \ ^ ] f ( . x ) (6.18)

for x e Ei(b) with a, p, h, y € K" (0 < y < 1) is solvable in Li(Ei(b)) if and
only if

ra
^ 1 /" ix-
-y) JE,(X)

and

9 3 ^ .M
i -o
lx=0

(6.19)

. (6.20)
l-x=0 l-*=0
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Under these conditions, (6.18) has a unique solution given by

T(l - y) dx [ JEl

^^\f<,t)dt\ (6.21)

with d/Bx as in (6.9).

REMARK 5. When a — (at,... , ctn) = 0, Theorem 8 and Corollary 9 are reduced
to the results obtained in [8, Theorem 2 and Corollary] (see also the case r = 0 in [26,
Theorem 28.7 and Corollary]).

7. Sufficient conditions for the solvability of the multidimensional
model Abel-type hypergeometric integral equation

To discuss the results concerning the solvability of the model Abel-type multidimen-
sional hypergeometric integral equation (6.18), we need some preliminary assertions.
For x = (x\,... , xn) e K" and m = (m,, . . . , mn) e M%, we define a multivariable
function S(x) by

•JC, (7-1)
k=0 k, *„=()

where c(k) is a bounded multiple sequence and |*,| < Rt {Rt > 0; / = 1, . . . , n).

LEMMA 10. Fory e R"+ and p e K",

/ (x-ty-xS{p(x-t))dt
JE,(x)

1 vV*l C7 9^

where S(x) is defined by (7.1).

PROOF. Using (7.1) and (2.13) and substituting

t2-\ 1- tn),
(7.3)

- t2 = s2(x, + x2 + b H h tn),
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successively, we have

(x-ty-ls(P(.x-t))dt
Et(x)

= Yl c(k) J'" pk
n- (Xn - tny°+k*-1 dtn

p
k-> ( x , — t ) r»- i+*»- i - l d( _ x • • •

J-(Xi+l}H 1-(,) •'-('2H !-(„)

= Tc(k)P
k—l—

x J 2

f^ T(l + y, + y2 + k{ + k2) ;_(,,+...+,„_,)

(x2 - /2)w+*3-'^. + r2 + • • • + A,)*-* ^2

* I' (x3 - hT^~\xx + x2 + t3 + • • • + ,„)»+*+*<+*' dt3.
J-(X,+X2+IV ••+!„)

Continuing this process, we obtain

which gives (7.2), in view of (2.1) and (2.10). This completes the proof of Lemma 10.

The following assertion proved along the lines of our proof of Lemma 10 by
applying the successive substitutions (7.3), etc., is an analogue of the relation in
which the Beta function is expressed via Gamma functions [5].

LEMMA 11. For y € \&n
+ and r > 0,

f (x-ty-\\ty-idt =

COROLLARY 12. Fora e OS" with a < 1,
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REMARK 6. For 0 < a < 1, the result in (7.5) was proved by Kilbas et al. [8, p. 5,
(3.4)].

The next statement, which can be proved by applying (2.15) and Lemma 11, is a
generalization of Lemma 11 for the multidimensional model Abel-type hypergeomet-
ric integral operator defined in (6.18).

LEMMA 13. If a, p, h, y e Kn (0 < y < 1), r > 0 and

max
1 X

Xx - hy

1 X

xn -hn
] < • •

then

(7.6)

. (7-7)

where

FB[a,P;r + \y\;
1 x

x-h

,<*„;&,... ,pH;r+\y\;-^-,... , - ^ - ) (7.8)
Xi — Aii xn — nn

is given by (2.15).

By an analogy with (2.9), we can obtain the subspace /^ 0(L\) of the space (6.14),
introduced in [24] and defined by

— Co €

-fix) = ck e K1 (1 <tk^n- 1)1. (7.9)
J

This space is characterized by the following assertion [24, Corollary of Lemma 1].

LEMMA 14. The function f (x) e Il
Ei 0(L,) if and only if

(7.10)

where ck (k = 1 , . . . , n) are given in (7.9).

The following assertion is a multidimensional analogue of Lemma 5.
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LEMMA 15. Letx,h e W and a, 0, y e K" be such that

0 < y < l , \l-x\ = \xx + ---+xn\<mm[\xl-hl\,... ,\xn-hn\]. (7.11)

v tt R

Iff(x) 6 /E,,O(£I), then f E'X (X) defined by (6.19) can be represented in the form:

x F \-a, l + p-y;2-y; ^—J-l ^-f (t)dt, (7.12)
(_ x — n J at

where ck are given in (7.9).

PROOF. By using the relations (7.10) and (6.19), we have

fir* w = tt

(7.13)

Applying Lemma 13, we find for the first term that

= (x - h)a

xFB[-u,l + p-y;n + k-\y\ + l; . (7 .14)

Changing the order of integration in the second term I2(x) and using (2.6) and (2.14),
we obtain

- Y) JE,(X)

x / (x-t
x-

and (7.12) follows from (7.13) to (7.15).
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Applying Lemma 15 and (6.21), after differentiation of (7.12), we obtain the
following result similar to Theorem 7 and concerning the solvability of (6.18).

THEOREM 16. Let x, h, a, 0, y £ K" be such that the conditions in (7.11) are
satisfied. If fix) € / £ l . o a , ) , /£"• ' (*) given by (7.12) belongs to /£,(L,) and
satisfies the conditions (6.20), then the Abel-type model multidimensional integral
equation (6.18) is solvable in L\{E\(b)) and its solution (6.21) can be represented in
the form:

^ ^ (7.16)

where

"i =1
' \x-hjim) JlJlJm

i 1 (
x-hjm ' \xx-hjim) JlJl±'Jm=l(xu-hj,)---(Xjm-

for m = 1, 2 , . . . , n. In particular

a - i \ y ^ ocj - ij _ a\ - i\ an - in
h h[ i i \ \ xn-hn'

J —'

a ~ i \ - V^ (a;, -ij,)(ah - ' ;»)

- h,)(x2-h2) {x\ - hx)(xn - hn)
(a2- h)(an - in)

+ ', 7-ff̂  7-T + --- +
(x2 - h2)(Xi - h^ (x2 - h2)(xn - hn)

(«n_i - in-i)(an - in)

f « - i \ _ (or i - i | ) - - - ( g , , _ i - / n - i ) ( a 2 - '2) • • • ( < * „ - '»)

\ A : - A / ( n _ n ( x , - / i i ) - - - ( j r n _ i - / i n _ , ) (x 2 - /z2) • • • (xn - hn) '

(«,-/.)-(«.-«.) ( 7 ]

() x ~ h (xi - ht)---(xn-hn)'

REMARK 7. In Theorem 16 we stated sufficient conditions for the solvability of
(6.18) in L| (£0 via the auxiliary function f^"'fi(x) given by (6.19) and found another
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representation (7.16) for the solution of (6.18). It is an open problem to find the
sufficient conditions in terms of the function/ (x) itself.

8. Generalized pyramidal fractional calculus operators

The results in Section 6 lead to the definitions of generalized pyramidal fractional
integral and differential operators. The former is introduced by (6.1).

DEFINITION 17. Let Ae,r(b) be a nonempty pyramid (2.12) in W and let A, a,
and y € W+. For x € Acr(b) the generalized pyramidal fractional integral operator is
defined by (6.1):

x f (A • (x - t)r)r-lF [«, fry, A ' (* ~'* 1 <p(t)dt. (8.1)

In particular, if E\ (b) is a model pyramid (2.13), for JC e £i (6) the model generalized
pyramidal fractional integral operator is defined by

(8.2)

According to (6.11) for y e R"+ (0 < y < 1), the corresponding generalized
fractional differential operator, inverse to (8.1), is defined by

where 5;ll are elements of the inverse matrix A"1. In particular, if E\(b) is a model
pyramid (2.13), for* 6 Et(b) the model generalized pyramidal fractional differential
operator is defined by (6.21):

- t\~y
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x F\-a,l+p-y;l-y;?^\f(t)dtY (8.4)

In order to extend this definition to any y e K^, we prove the following statement,
which is an analogue of a semigroup property for the pyramidal analogues of the
Riemann-Liouville mixed fractional integrals (see [26, (28.91)]).

THEOREM 18. LetAcr{b) be a nonempty pyramid (2.12) in W andleth, a, /?,
andy,$ e Rn

+. Then, for <p(x) € Z.,(A

In particular, if Et(b) is a model pyramid (2.13), then

h, 'E, <P = 'E, V (°-°)

forx € Ex(b).

PROOF. We apply arguments similar to those in Section 6. By (8.1), after changing
the order of integration, we have

x (A • (/ - T ) ) 5 " 1 • (A • (t - h)y"

Making the following change of variables:

a. • (x - t)
S = , <tj:= (aJU . . . ,aJn) (j = 1 n)

a, • (x - T)

in the inner integral and using (2.7) and (2.14), we obtain

- h)r'(a>L U
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(A • (x - h))"""

and (8.5) is proved.

The following statement gives the solution of the Abel-type hypergeometric integral
equation (6.1) with any y > 0.

THEOREM 19. Let a, 0, h e W1, y € W+ andm = [y] + 1 = (m,, . . . , mn). If the
Abel-type hypergeometric integral equation (6.1) is solvable in Li(Acr(b)), then its
solution cp(x) is given by

L \ I J

T ) 1 { / " (A • (x -

x F\-a,m + p-y;m-y,A ^ ^ 1 / ( 0 ^ } - (88)

|_ A • (x - n)j J

PROOF. Applying the operator i™-v<-tt-m+t-r to both sides of the relation lv£*<p =
f and using (8.5), we have

Making the change of variables (6.5), we rewrite this relation in the form:

/

where
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with d = A~l • c. Now, just as in (6.8), we have

1

315

Ton)
/ (yn-Tn)

m"-Uzn\
J-(yi+—+y,-i) >'-(yi+-+y»-2+r.)

F ' -i
< • • • x / Vf(r)(yi — r i ) « r i = ^

By successively differentiating with respect to yn, yn-\,... , y\, we obtain

which is equivalent to (8.8) in view of (8.9) and (6.10). This completes the proof of
Theorem 19.

COROLLARY 20. Let a,0,h e R", y g l * and m = [y] + 1 = ( m , , . . . , mn). If
the model Abel-type hypergeometric integral equation (6.18) is solvable in L^Ei (b)),
then its solution cp(x) is given by

T(m - y)

x F [-«,

[ JEl{x)

m (8.11)

Theorem 19 leads to the following definition of the generalized fractional differen-
tial operators, inverse to (8.1), for any y € R"+.

DEFINITION 21. Let Ac,r(b) be a nonempty pyramid (2.12) in W and let h, a, 0 e
R", y € R^ and m = [a] + 1 = (mu • • • , wn). For j : e Ac,r(b) the generalized
pyramidal fractional differential operator is defined by (6.11):

= \f\
L*= i

JAC.,(
(A • (x -

x F[-a, fi - y;m - y ;
(2

where a; t are elements of the inverse matrix A'1.
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In particular, if Ei(b) is a model pyramid (2.13), for x e Ei(b) the model general-
ized pyramidal fractional differential operator is defined by (6.21):

1
\{x-h)a! (x-

T(m - y) dx"

(8.13)

The following statement is proved just as Theorem 18 was.

THEOREM 22. Let a,fi,h e R", y e &n
+ and m = [y] + 1 = (m,, . . . , mn). If

<p & Lx(Ac,r(b)), then

In particular, for <p € Lx(E\(b)),

D'E'-'I^0/ =f. (8.15)

It was noted in Remark 4 at the end of Section 5 that the one-dimensional generalized
fractional integral and differential operators, given in (3.1) and (3.6) with a, fi and y
being replaced by a + fi, —r\ and a, respectively, arise in solving certain boundary
value problems for differential equations ([7,16-19,21-23,25,28,31,33]). Similarly,
we define the generalized pyramidal fractional integral and differential operators.

DEFINITION 23. Let Ac,r(b) be a nonempty pyramid (2.12) in K" and let h,p,ri e
OS" and a € K[J.. For x e Ac,r(b), the generalized pyramidal fractional integral
operator is defined by

(./;/>) (x) - (/;.r'"V)

/ Ac.A*)

\<p(t)dt. (8.16)
(x -h)j

In particular, for x e E\(b) the model generalized pyramidal fractional integral
operator has the form:

'£"•>) (x) = (l^+0--\) (x)

v* " / i /_. i \ a - l r* I .. • a I . . /^\ j ^ (R \7}
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DEFINITION 24. Let Ac,r(b) be a nonempty pyramid (2.12) in W and let h, /J,
a e R"_ and m = [-a] + 1 = (mi, . . . , mn). For x e A,..r(6), the generalized
pyramidal fractional differential operator is defined by

n in

where aJk are elements of the inverse matrix A .

In particular, for x e Ex (b) the model generalized pyramidal fractional differential
operator has the form:

(ja
Ef"f) (x) = ̂  (C"-'""1'""/) (*)• (8-19)

The proofs of the following statements are similar to those of Theorems 18 and 19.

THEOREM 25. LetAc,r{b)beanonemptypyramid(2A2)inR"andleth, 0, i/, SelR"
anda, y e \&"+. Then, for<p(x) € Li(Acr(b)),

In particular, if Ei(b) is a model pyramid (2.13), then

,a,p,Ji .y,i,a+ij ja+y,fi+i,i] (9.0W

forx e Ej(b).

THEOREM 26. Let h,p,t] e K", a e I " and m = [a] + 1. If the Abel-type
hypergeometric integral equation:

(A-{x-t))a~l

= f(x) (x€Ac,r(b)) (8.22)

is solvable in L\ (Ac.r(b)), then its solution <p{x) is given by

[ n I n - \

i

r(m-a) iliiL'i'T-] ]\(A-(x-h)r^f (A-(x-/

[" -a - /? , HI - « - i y ; w - a ; ^ "^_ ^ 1 rff 1 . (8.23)
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COROLLARY 27. Let h, /?, 17 € R", a € Rn
+ and m = [a] + 1. If the Abel-type

hypergeometric integral equation:

(x - h)-"-" f « i f x - t~\
-—-— / (x-0 F \a + p, -ri;a; \<p(t)dt =f(x), (8.24)T(a) JEl(x) I x-h]

where x e E\(b), is solvable in L\ (Ei(b)), then its solution <p(x) is given by

i 31" f r
\(x - h)a+l> / (x -

\-a- p,m-a-ti;m-a-,^Jx F\-a- p,m-a-ti;m-a-,^JAf(t)dt\. (8.25)

On the basis of Theorem 26, we introduce the generalized pyramidal fractional
derivative as an inversion of the corresponding generalized pyramidal fractional inte-
gral.

DEFINITION 28. Let Ac,r(b) be a nonempty pyramid (2.12) in K" and let h, /S,
a € R+ andm = [a] + l = (mi, . . . , mn). For* e Ac,r(ft) the generalized pyramidal
fractional differential operator is defined by

> = [fl (t;^) ]

x \(A-(x-h))"+f f —a—l

(8.26)

In particular, for x e E\(b) the model generalized pyramidal fractional differential
operator has the form:

x Fr-a-/S,/n-a-^;m-a;^^j/(O^j. (8.27)
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The proof of the following result is similar to that of Theorem 22.

T H E O R E M 29. Let h,p,j]e R", a e Rn
+ and m = [a] + 1. If<p e L,(A<. r(ft)),

then

S£'lf/£?•'/ = / . (8.28)

In particular, for <p € Z-i (Ei(ft)),

&E?*Jlf*f=f- (8-29)
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